Skip to main content
Log in

Soil Acidobacteria Strain AB23 Resistance to Oxidative Stress Through Production of Carotenoids

  • Soil Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Metagenomic studies revealed the prevalence of Acidobacteria in soils, but the physiological and ecological reasons for their success are not well understood. Many Acidobacteria exhibit carotenoid-related pigments, which may be involved in their tolerance of environmental stress. The aim of this work was to investigate the role of the orange pigments produced by Acidobacteria strain AB23 isolated from a savannah-like soil and to identify putative carotenoid genes in Acidobacteria genomes. Phylogenetic analysis revealed that strain AB23 belongs to the Occallatibacter genus from the class Acidobacteriia (subdivision 1). Strain AB23 produced carotenoids in the presence of light and vitamins; however, the growth rate and biomass decreased when cells were exposed to light. The presence of carotenoids resulted in tolerance to hydrogen peroxide. Comparative genomics revealed that all members of Acidobacteriia with available genomes possess the complete gene cluster for phytoene production. Some Acidobacteriia members have an additional gene cluster that may be involved in the production of colored carotenoids. Both colored and colorless carotenoids are involved in tolerance to oxidative stress. These results show that the presence of carotenoid genes is widespread among Acidobacteriia. Light and atmospheric oxygen stimulate carotenoid synthesis, but there are other natural sources of oxidative stress in soils. Tolerance to environmental oxidative stress provided by carotenoids may offer a competitive advantage for Acidobacteria in soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Janssen PH (2006) Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl Environ Microbiol 72:1719–1728. https://doi.org/10.1128/aem.72.3.1719-1728.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kielak AM, Barreto CC, Kowalchuk GA, van Veen JA, Kuramae EE (2016) The ecology of Acidobacteria: moving beyond genes and genomes. Front Microbiol 7:744. https://doi.org/10.3389/fmicb.2016.00744

    Article  PubMed  PubMed Central  Google Scholar 

  3. Zengler K (2008) Accessing uncultivated microorganisms. American Society of Microbiology, San Diego

    Book  Google Scholar 

  4. Abed RMM, Safi NMD, Köster J et al (2002) Microbial diversity of a heavily polluted microbial mat and its community changes following degradation of petroleum compounds. Appl Environ Microbiol 68:1674–1683. https://doi.org/10.1128/AEM.68.4.1674-1683.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Barns SM, Cain EC, Sommerville L, Kuske CR (2007) Acidobacteria phylum sequences in uranium-contaminated subsurface sediments greatly expand the known diversity within the phylum. Appl Environ Microbiol 73:3113–3116. https://doi.org/10.1128/AEM.02012-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gremion F, Chatzinotas A, Harms H (2003) Comparative 16S rDNA and 16S rRNA sequence analysis indicates that Actinobacteria might be a dominant part of the metabolically active bacteria in heavy metal-contaminated bulk and rhizosphere soil. Environ Microbiol 5:896–907

    Article  CAS  PubMed  Google Scholar 

  7. Paul D, Pandey G, Meier C, Roelof van der Meer J, Jain RK (2006) Bacterial community structure of a pesticide-contaminated site and assessment of changes induced in community structure during bioremediation. FEMS Microbiol Ecol 57:116–127. https://doi.org/10.1111/j.1574-6941.2006.00103.x

    Article  CAS  PubMed  Google Scholar 

  8. Pessoa-Filho M, Barreto CC, dos Reis Junior FB, Fragoso RR, Costa FS, de Carvalho Mendes I, de Andrade LRM (2015) Microbiological functioning, diversity, and structure of bacterial communities in ultramafic soils from a tropical savanna. Antonie van Leeuwenhoek, Int J Gen Mol Microbiol 107:935–949. https://doi.org/10.1007/s10482-015-0386-6

    Article  CAS  Google Scholar 

  9. Sánchez-Peinado M d M, González-López J, Martínez-Toledo MV et al (2010) Influence of linear alkylbenzene sulfonate (LAS) on the structure of Alphaproteobacteria, Actinobacteria, and Acidobacteria communities in a soil microcosm. Environ Sci Pollut Res 17:779–790. https://doi.org/10.1007/s11356-009-0180-y

    Article  CAS  Google Scholar 

  10. Dedysh SN, Kulichevskaya IS, Serkebaeva YM, Mityaeva MA, Sorokin VV, Suzina NE, Rijpstra WIC, Sinninghe Damsté JS (2011) Bryocella elongata gen. nov., sp. nov., a member of subdivision 1 of the Acidobacteria isolated from a methanotrophic enrichment culture, and emended description of Edaphobacter aggregans Koch et al. 2008. Int J Syst Evol Microbiol 62:654–664. https://doi.org/10.1099/ijs.0.031898-0

    Article  CAS  PubMed  Google Scholar 

  11. Kielak AM, Castellane TCL, Campanharo JC, Colnago LA, Costa OYA, Corradi da Silva ML, van Veen JA, Lemos EGM, Kuramae EE (2017) Characterization of novel Acidobacteria exopolysaccharides with potential industrial and ecological applications. Sci Rep 7:41193. https://doi.org/10.1038/srep41193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kornberg A, Rao NN, Ault-Riche D et al (1999) Inorganic polyphosphate: a molecule of many functions. Annu Rev Biochem 68:89–125. https://doi.org/10.1146/annurev.biochem.68.1.89

    Article  CAS  PubMed  Google Scholar 

  13. Ruiz ON, Alvarez D, Gonzalez-Ruiz G, Torres C (2011) Characterization of mercury bioremediation by transgenic bacteria expressing metallothionein and polyphosphate kinase. BMC Biotechnol 11:82. https://doi.org/10.1186/1472-6750-11-82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fierer N, Bradford MA, Jackson RB (2007) Toward an ecological classification of soil bacteria. Ecology 88:1354–1364. https://doi.org/10.1890/05-1839

    Article  PubMed  Google Scholar 

  15. Lladó S, Žifčáková L, Větrovský T, Eichlerová I, Baldrian P (2015) Functional screening of abundant bacteria from acidic forest soil indicates the metabolic potential of Acidobacteria subdivision 1 for polysaccharide decomposition. Biol Fertil Soils 52:251–260. https://doi.org/10.1007/s00374-015-1072-6

    Article  CAS  Google Scholar 

  16. Rawat SR, Mannisto MK, Bromberg Y et al (2012) Comparative genomic and physiological analysis provides insights into the role of Acidobacteria in organic carbon utilization in Arctic tundra soils. FEMS Microbiol Ecol 82:341–355. https://doi.org/10.1111/j.1574-6941.2012.01381.x

    Article  CAS  PubMed  Google Scholar 

  17. Greening C, Carere CR, Rushton-Green R, Harold LK, Hards K, Taylor MC, Morales SE, Stott MB, Cook GM (2015) Persistence of the dominant soil phylum Acidobacteria by trace gas scavenging. Proc Natl Acad Sci 112:10497–10502. https://doi.org/10.1073/pnas.1508385112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Eichorst SA, Breznak JA, Schmidt TM (2007) Isolation and characterization of soil bacteria that define Terriglobus gen. nov., in the phylum Acidobacteria. Appl Environ Microbiol 73:2708–2717. https://doi.org/10.1128/aem.02140-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mannisto MK, Rawat S, Starovoytov V, Haggblom MM (2012) Granulicella arctica sp. nov., Granulicella mallensis sp. nov., Granulicella tundricola sp. nov. and Granulicella sapmiensis sp. nov., novel acidobacteria from tundra soil. Int J Syst Evol Microbiol 62:2097–2106. https://doi.org/10.1099/ijs.0.031864-0

    Article  CAS  PubMed  Google Scholar 

  20. Rodriguez-Amaya D, Kimura M (2004) HarvestPlus handbook for carotenoid analysis. HarvestPlus, Washington

    Google Scholar 

  21. Jensen SL (1965) Biosynthesis and function of carotenoid pigments in microorganisms. Annu Rev Microbiol 19:163–182. https://doi.org/10.1146/annurev.mi.19.100165.001115

    Article  CAS  PubMed  Google Scholar 

  22. DeRosa MC, Crutchley RJ (2002) Photosensitized singlet oxygen and its applications. Coord Chem Rev 233:351–371. https://doi.org/10.1016/S0010-8545(02)00034-6

    Article  Google Scholar 

  23. Devasagayam TP, Kamat JP (2002) Biological significance of singlet oxygen. Indian J Exp Biol 40:680–692

    CAS  PubMed  Google Scholar 

  24. Krinsky NI, Yeum K-J (2003) Carotenoid–radical interactions. Biochem Biophys Res Commun 305:754–760. https://doi.org/10.1016/S0006-291X(03)00816-7

    Article  CAS  PubMed  Google Scholar 

  25. de Castro VHL, Schroeder LF, Quirino BF, Kruger RH, Barreto CC (2013) Acidobacteria from oligotrophic soil from the Cerrado can grow in a wide range of carbon source concentrations. Can J Microbiol 59:746–753. https://doi.org/10.1139/cjm-2013-0331

    Article  CAS  PubMed  Google Scholar 

  26. Sait M, Hugenholtz P, Janssen PH (2002) Cultivation of globally distributed soil bacteria from phylogenetic lineages previously only detected in cultivation-independent surveys. Environ Microbiol 4:654–666. https://doi.org/10.1046/j.1462-2920.2002.00352.x

    Article  CAS  PubMed  Google Scholar 

  27. Balch WE, Fox GE, Magrum LJ, Woese CR, Wolfe RS (1979) Methanogens: reevaluation of a unique biological group. Microbiol Rev 43:260–296. https://doi.org/10.1128/MMBR.43.2.260-296.1979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Atlas RM (2005) Handbook of media for environmental microbiology. In: Ronald M. Atlas (ed) 2nd ed. Taylor & Francis, Boca Raton, U.S

  29. Kulichevskaya IS, Kostina LA, Valaskova V et al (2012) Acidicapsa borealis gen. nov., sp. nov. and Acidicapsa ligni sp. nov., subdivision 1 Acidobacteria from Sphagnum peat and decaying wood. Int J Syst Evol Microbiol 62:1512–1520. https://doi.org/10.1099/ijs.0.034819-0

    Article  CAS  PubMed  Google Scholar 

  30. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW (2015) CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 25:1043–1055. https://doi.org/10.1101/gr.186072.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Markowitz VM, Chen I-MA, Palaniappan K, Chu K, Szeto E, Grechkin Y, Ratner A, Jacob B, Huang J, Williams P, Huntemann M, Anderson I, Mavromatis K, Ivanova NN, Kyrpides NC (2012) IMG: the integrated microbial genomes database and comparative analysis system. Nucleic Acids Res 40:D115–D122. https://doi.org/10.1093/nar/gkr1044

    Article  CAS  PubMed  Google Scholar 

  32. Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW (2016) GenBank. Nucleic Acids Res 44:D67–D72. https://doi.org/10.1093/nar/gkv1276

    Article  CAS  PubMed  Google Scholar 

  33. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797. https://doi.org/10.1093/nar/gkh340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Guindon S, Delsuc F, Dufayard JF, Gascuel O (2009) Estimating maximum likelihood phylogenies with PhyML. Methods Mol Biol. https://doi.org/10.1007/978-1-59745-251-9_6

  35. Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526. https://doi.org/10.1093/oxfordjournals.molbev.a040023

    Article  CAS  PubMed  Google Scholar 

  36. Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549. https://doi.org/10.1093/molbev/msy096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Varghese NJ, Mukherjee S, Ivanova N, Konstantinidis KT, Mavrommatis K, Kyrpides NC, Pati A (2015) Microbial species delineation using whole genome sequences. Nucleic Acids Res 43:6761–6771. https://doi.org/10.1093/nar/gkv657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chen IMA, Markowitz VM, Chu K, Palaniappan K, Szeto E, Pillay M, Ratner A, Huang J, Andersen E, Huntemann M, Varghese N, Hadjithomas M, Tennessen K, Nielsen T, Ivanova NN, Kyrpides NC (2017) IMG/M: integrated genome and metagenome comparative data analysis system. Nucleic Acids Res 45:D507–D516. https://doi.org/10.1093/nar/gkw929

    Article  CAS  PubMed  Google Scholar 

  39. Hedges AJ (2002) Estimating the precision of serial dilutions and viable bacterial counts. Int J Food Microbiol 76:207–214. https://doi.org/10.1016/S0168-1605(02)00022-3

    Article  CAS  PubMed  Google Scholar 

  40. Miles AA, Misra SS, Irwin JO (1938) The estimation of the bactericidal power of the blood. Epidemiol Infect 38:732–749. https://doi.org/10.1017/S002217240001158X

    Article  CAS  Google Scholar 

  41. Reddy A, Beveridge TJ, Breznak JA, et al (2007) Methods for general and molecular microbiology, Third Edition. American Society of Microbiology

  42. Team RC (2013) R: a language and environment for statistical computing

  43. Kanehisa M (2017) Enzyme annotation and metabolic reconstruction using KEGG. Methods in molecular biology. Springer New York, New York, pp 135–145

    Google Scholar 

  44. Kanehisa M, Sato Y, Furumichi M, Morishima K, Tanabe M (2019) New approach for understanding genome variations in KEGG. Nucleic Acids Res 47:D590–D595. https://doi.org/10.1093/nar/gky962

    Article  CAS  PubMed  Google Scholar 

  45. Foesel BU, Mayer S, Luckner M, Wanner G, Rohde M, Overmann J (2016) Occallatibacter riparius gen. nov., sp. nov. and Occallatibacter savannae sp. nov., acidobacteria isolated from Namibian soils, and emended description of the family Acidobacteriaceae. Int J Syst Evol Microbiol 66:219–229. https://doi.org/10.1099/ijsem.0.000700

    Article  CAS  PubMed  Google Scholar 

  46. Pankratov TA, Dedysh SN (2010) Granulicella paludicola gen. Nov., sp. nov., Granulicella pectinivorans sp. nov., Granulicella aggregans sp. nov. and Granulicella rosea sp. nov., acidophilic, polymer-degrading acidobacteria from Sphagnum peat bogs. Int J Syst Evol Microbiol 60:2951–2959. https://doi.org/10.1099/ijs.0.021824-0

    Article  CAS  PubMed  Google Scholar 

  47. Pelz A, Wieland KP, Putzbach K, Hentschel P, Albert K, Götz F (2005) Structure and biosynthesis of staphyloxanthin from Staphylococcus aureus. J Biol Chem 280:32493–32498. https://doi.org/10.1074/jbc.M505070200

    Article  CAS  PubMed  Google Scholar 

  48. Kim SH, Lee PC (2012) Functional expression and extension of staphylococcal staphyloxanthin biosynthetic pathway in Escherichia coli. J Biol Chem. https://doi.org/10.1074/jbc.M112.343020

  49. Kirti K, Amita S, Priti S, Mukesh Kumar A, Jyoti S (2014) Colorful world of microbes: carotenoids and their applications. Adv Biol 2014:1–13. https://doi.org/10.1155/2014/837891

    Article  CAS  Google Scholar 

  50. Clauditz A, Resch A, Wieland KP, Peschel A, Götz F (2006) Staphyloxanthin plays a role in the fitness of Staphylococcus aureus and its ability to cope with oxidative stress. Infect Immun 74:4950–4953. https://doi.org/10.1128/IAI.00204-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Meléndez-Martínez AJ, Britton G, Vicario IM, Heredia FJ (2006) Relationship between the colour and the chemical structure of carotenoid pigments. Food Chem 101:1145–1150. https://doi.org/10.1016/j.foodchem.2006.03.015

    Article  CAS  Google Scholar 

  52. Koschmieder J, Fehling-Kaschek M, Schaub P, Ghisla S, Brausemann A, Timmer J, Beyer P (2017) Plant-type phytoene desaturase: functional evaluation of structural implications. PLoS One 12:e0187628. https://doi.org/10.1371/journal.pone.0187628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Fromm M, Bayha S, Kammerer DR, Carle R (2012) Identification and quantitation of carotenoids and tocopherols in seed oils recovered from different rosaceae species. J Agric Food Chem 60:10733–10742. https://doi.org/10.1021/jf3028446

    Article  CAS  PubMed  Google Scholar 

  54. Oren A, Hirschberg J, Mann V, Jehlička J (2018) Effects of nicotine on the biosynthesis of carotenoids in halophilic Archaea (class Halobacteria): an HPLC and Raman spectroscopy study. Extremophiles 22:359–366. https://doi.org/10.1007/s00792-018-0995-x

    Article  CAS  PubMed  Google Scholar 

  55. Stafsnes MH, Josefsen KD, Kildahl-Andersen G, Valla S, Ellingsen TE, Bruheim P (2010) Isolation and characterization of marine pigmented bacteria from Norwegian coastal waters and screening for carotenoids with UVA-blue light absorbing properties. J Microbiol 48:16–23. https://doi.org/10.1007/s12275-009-0118-6

    Article  CAS  PubMed  Google Scholar 

  56. Kaiser P, Surmann P, Vallentin G, Fuhrmann H (2007) A small-scale method for quantitation of carotenoids in bacteria and yeasts. J Microbiol Methods 70:142–149. https://doi.org/10.1016/j.mimet.2007.04.004

    Article  CAS  PubMed  Google Scholar 

  57. Knak A, Regensburger J, Maisch T, Bäumler W (2014) Exposure of vitamins to UVB and UVA radiation generates singlet oxygen. Photochem Photobiol Sci 13:820–829. https://doi.org/10.1039/C3PP50413A

    Article  CAS  PubMed  Google Scholar 

  58. Keller T, Damude HG, Werner D, Doerner P, Dixon RA, Lamb C (1998) A plant homolog of the neutrophil NADPH oxidase gp91 phox subunit gene encodes a plasma membrane protein with Ca 2+ binding motifs. Plant Cell 10:255–266. https://doi.org/10.2307/3870703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Orozco-Cardenas M, Ryan CA (1999) Hydrogen peroxide is generated systemically in plant leaves by wounding and systemin via the octadecanoid pathway. Proc Natl Acad Sci U S A 96:6553–6557. https://doi.org/10.1073/pnas.96.11.6553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wojtyla Ł, Lechowska K, Kubala S, Garnczarska M (2016) Different modes of hydrogen peroxide action during seed germination. Front Plant Sci 7:66. https://doi.org/10.3389/fpls.2016.00066

    Article  PubMed  PubMed Central  Google Scholar 

  61. Valášková V, De Boer W, Gunnewiek PJAK et al (2009) Phylogenetic composition and properties of bacteria coexisting with the fungus Hypholoma fasciculare in decaying wood. ISME J 3:1218–1221

    Article  PubMed  Google Scholar 

  62. Kielak AM, Scheublin TR, Mendes LW, van Veen JA, Kuramae EE (2016) Bacterial community succession in pine-wood decomposition. Front Microbiol 7:231. https://doi.org/10.3389/fmicb.2016.00231

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was financed by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-Brasil (CAPES)-Finance Code 001. Grant No. 88881.062152/2014-01

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristine Chaves Barreto.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Figure S1

Red/orange pigments exhibited by Occallatibacter sp. AB23 under (A) Light (top) and dark (bottom) and (B) agar stab inoculation on semi-solid medium, providing an oxygen gradient with the agar surface exposed to atmospheric concentrations of oxygen (~20%). (PDF 47057 kb)

Figure S2

(A) Chromatogram of pigment extracted from Occallatibacter sp. AB23 grown under light. (B) Diode array absorbance spectra of the chromatographic fractions. RT: retention time of each fraction corresponding to the chromatogram above. (PDF 173 kb)

Figure S3

Cell viability and production of red pigment by Occallatibacter sp. AB23 in the presence or absence of vitamins and trace elements on VL-55 medium. Colonies of Occallatibacter sp. AB23 in different treatments and dilutions. Treatments: both vitamins and trace elements (V + T); vitamins without trace elements (V); trace elements without vitamins (T); and without vitamins or trace elements (NA). Cell inoculum (no dilution), dilutions of 101, 10−2, 10−3, and 10−4. The scale bar is 100 mm. (PDF 36005 kb)

Figure S4

Putative pathway of carotenoids in Acidobacteria. The names of the enzymes are hpnC, squalene synthase; ctrB, 15-cis phytoene synthase; crtI, phytoene desaturase; ctrQ, 9,9′-di-cis-zeta-carotene desaturase or 4,4′-diaponeurosporenoate glycosyltransferase, crtP, diapolycopene oxygenase; and crtO, glycosyl-4,4′-diaponeurosporenoate acyltransferase. The genes not detected were assigned to “?”. (PDF 600 kb)

Table S5

(DOCX 16 kb)

Table S6

(DOCX 18 kb)

Table S7

(DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pinto, O.H.B., Costa, F.S., Rodrigues, G.R. et al. Soil Acidobacteria Strain AB23 Resistance to Oxidative Stress Through Production of Carotenoids. Microb Ecol 81, 169–179 (2021). https://doi.org/10.1007/s00248-020-01548-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-020-01548-z

Keywords

Navigation