Skip to main content
Log in

Quantitative Relationship Between the Nucleation Undercooling of Liquid Iron and Its Liquid Structure: Investigated by In Situ Synchrotron Radiation

  • Communication
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The nucleation behavior of liquid iron with various iron oxides was investigated through an in situ synchrotron radiation analysis and undercooling measurements. When Al and Si were added into the liquid in an oxygen atmosphere, three typical nucleation behaviors with three different undercooling values were observed during a thermocycling treatment. Further investigation showed that the nucleation undercooling (ΔT) increased linearly with variations in the nearest neighbor distance (r1) values of the liquid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. [1].K. Nakajima, H. Hasegawa, S. Khumkoa and S. Mizoguchi: Metall. Mater. Trans. B, 2009, vol. 57, pp. 4891-4901.

    Google Scholar 

  2. [2].Z. Fan, Y. Wang, M. Xia and S. Arumuganathar: Acta Mater., 2003, vol. 34, pp. 539-547.

    Google Scholar 

  3. H.T. Li, Y. Wang and Z. Fan: Acta Mater., 2012, vol. 60, pp. 1528-1537.

    Article  CAS  Google Scholar 

  4. [4].T. Suzuki, J. Inoue and T. Koseki: ISIJ Int., 2007, vol. 47, pp. 847-852.

    Article  CAS  Google Scholar 

  5. [5].D. Turnbull and B. Vonnegut: Ind. & Eng. Chem., 1952, vol. 44, pp. 1292-1298.

    Article  CAS  Google Scholar 

  6. [6].B.L. Bramfitt: Metall. Mater. Trans. B, 1970, vol. 1, pp. 1987-1995.

    Article  Google Scholar 

  7. [7].R. Günther, C. Hartig and R. Bormann: Acta Mater., 2006, vol. 54, pp. 5591-5597.

    Article  Google Scholar 

  8. S.A. Kori, B.S. Murty and M. Chakraborty: Mater. Sci. Eng. A, 2000, vol. 280, pp. 58-61.

    Article  Google Scholar 

  9. [9].M.X. Zhang, P.M. Kelly, M. Qian and J.A. Taylor: Acta Mater., 2005, vol. 53, pp. 3261-3270.

    Article  CAS  Google Scholar 

  10. [10].L. Wang, W. Lu, Q. Hu, M. Xia, Y. Wang and J. Li: Acta Mater., 2017, vol. 139, pp. 75-85.

    Article  CAS  Google Scholar 

  11. [11].S.H. Oh, Y. Kauffmann, C. Scheu, W.D. Kaplan and M. Rühle: Science, 2005, vol. 310, pp. 661-663.

    Article  CAS  Google Scholar 

  12. [12].S. Ma, A. Brown, R. Yan, R.L. Davidchack, P.B. Howes, C. Nichlin, Q. Zhai, T. Jing and H. Dong: Comm. Chem., 2019, vol. 2, pp. 1-12.

    Article  Google Scholar 

  13. [13].A.L. Greer: Nat. Mater., 2006, vol. 5, pp. 13-14.

    Article  CAS  Google Scholar 

  14. [14].H. Reichert, O. Klein, H. Dosch, M. Denk, V. Honkimäki, T. Lippmann and G. Reiter: Nature, 2000, vol. 408, pp. 839-841.

    Article  CAS  Google Scholar 

  15. [15].J. Wang, A. Horsfield, U. Schwingenschlögl and P.D. Lee: Phys. Rev. B, 2010, vol. 82, pp. 184203.

    Article  Google Scholar 

  16. [16].C. Fang, H. Men and Z. Fan: Metall. Mater. Trans. A, 2018, vol. 49, pp. 6231-6242.

    Article  Google Scholar 

  17. [17].C. Fang and Z. Fan: Comput. Mater. Sci., 2020, vol. 171, pp. 109258.

    Article  CAS  Google Scholar 

  18. [18].S.T. Yau and P.G. Vekilov: Nature, 2000, vol. 406, pp. 494-497.

    Article  Google Scholar 

  19. [19].Z. Wang, F. Wang, Y. Peng and Y. Han: Nat. Comm., 2015, vol. 6, pp. 1-9.

    Google Scholar 

  20. [20].J. Baumgartner, A. Dey, P.H.H. Bomans, C.L. Coadou, P. Fratzl, N. Sommerdijk and D. Faivre: Nat. Mater., 2013, vol. 12, pp. 310-314.

    Article  CAS  Google Scholar 

  21. [21].M. Xu, L. Wang, W. Lu, L. Zeng, H. Nadendla, Y. Wang, J. Li, Q. Hu, M. Xia and J. Li: Metall. Mater. Trans. A, 2018, vol. 49, pp. 1762-1769.

    Article  Google Scholar 

  22. [22].M. Xu, X. Ge, W. Yao, S. Tang, W. Lu, M. Qia, Y. Fu, H. Xie, T. Xiao, Q. Hu, J. Li and M. Xia: Metall. Mater. Trans. A, 2018, vol. 49, pp. 4419-4423.

    Article  Google Scholar 

  23. [23].M. Xu, M. Xia, Q. Hu and J. Li: Mater. Trans., 2018, vol. 59, pp. 1949-1951.

    Article  CAS  Google Scholar 

  24. [24].A.P. Hammersley: J. Appl. Crystallogr., 2016, vol. 49, pp. 646-652.

    Article  CAS  Google Scholar 

  25. [25].E. Jak, P. Hayes, A. Pelton and S. Decterov: Int. J. Mater. Res., 2007, vol. 98, pp. 847-854.

    Article  CAS  Google Scholar 

  26. [26].E. Kapilashrami and S. Seetharaman: J. Mater. Sci., 2005, vol. 40, pp. 2371-2375.

    Article  CAS  Google Scholar 

  27. [27].A. Karasev and H. Suito: Metall. Mater. Trans. B, 1999, vol. 30, pp. 259-270.

    Article  CAS  Google Scholar 

  28. [28].E. Lorch: J. Phys. C: Solid State Phys., 1969, vol. 2, pp. 229.

    Article  Google Scholar 

  29. [29].T. Egami and S.J.L. Billinge: Underneath the Bragg Peaks: Structural Analysis of Complex Materials, Pergamon, New York, 2003, pp. 10-11.

    Google Scholar 

  30. [30].M. Stolpe, I. Jonas, S. Wei, Z. Evenson, W. Hembree, F. Yang, A. Meyer and R. Busch: Phys. Rev. B, 2016, vol. 93, pp. 014201.

    Article  Google Scholar 

  31. [31].H. Kimura, M. Watanabe, K. Lzumi, T, Hibiya, D. Holland-Moritz, T. Schenk, K.R. Bauchspieß, S. Schneider, I. Egry, K. Funakoshi and M. Hanfland: Appl. Phys. Lett., 2001, vol. 78, pp. 604-606.

    Article  CAS  Google Scholar 

  32. [32].F.C. Frank: Proc. Roy. Soc. A, 1952, vol. 215, pp. 43-46.

    CAS  Google Scholar 

  33. [33].K.F. Kelton, G.W. Lee, A.K. Gangopadhyay, R.W. Hyers, T.J. Rathz, J.R. Rogers, M.B. Robinson and D.S. Robinson: Phys. Rev. Lett., 2003, vol. 90, pp. 195504.

    Article  CAS  Google Scholar 

  34. [34].W.E. Jackson, J.M. de Leon, G.E. Brown Jr., G.A. Waychunas, S.D. Conradson and J.M. Combes: Science, 1993, vol. 262, pp. 229-233.

    Article  CAS  Google Scholar 

  35. [35].A.L. Greer, A.M. Bunn, A. Tronche, P.V. Evans and D.J. Bristow: Acta Mater., 2000, vol. 48, pp. 2823-2835.

    Article  CAS  Google Scholar 

  36. [36].W.J. Huisman, J.F. Peters, M.J. Zwanenburg, S.A. de Vries, T.E. Derry, D. Abernathy and J.F. van der Veen: Nature, 1997, vol. 390, pp. 379-381.

    Article  CAS  Google Scholar 

  37. [37].H. Men and Z. Fan: Comput. Mater. Sci., 2014, vol. 85, pp. 1-7.

    Article  CAS  Google Scholar 

  38. [38].M.M. Schneider and J.M. Howe: Acta Mater., 2019, vol. 54, pp. 9921-9932.

    Google Scholar 

  39. [39].J.M. How: Phil. Mag. A, 1996, vol. 74, pp. 761-775.

    Article  Google Scholar 

Download references

This work is supported by the National Key R&D Program of China (2017YFA0403802), the National Major Science and Technology Project of China (2017-VII-0008-0102), and the National Natural Science Foundation of China (91860121, 51727802, 51604173, 51821001). We also appreciate Prof. Ma Qian from RMIT for the useful discussion. Furthermore, we gratefully acknowledge the support of the synchrotron high-energy X-ray diffraction by the BL13W1 of the Shanghai Synchrotron Radiation Facility (SSRF), China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Xia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted January 29, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, S., Zeng, L., Xia, M. et al. Quantitative Relationship Between the Nucleation Undercooling of Liquid Iron and Its Liquid Structure: Investigated by In Situ Synchrotron Radiation. Metall Mater Trans A 51, 3754–3758 (2020). https://doi.org/10.1007/s11661-020-05825-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05825-x

Navigation