Skip to main content
Log in

Effect of Cyclic Intercritical Tempering on the Microstructure and Mechanical Properties of a Low-Carbon Cu-Bearing 7Ni Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

High strength and toughness are usually hard to obtain simultaneously because of the trade-off. In this research, cyclic intercritical tempering (IT) was applied to a low-carbon Cu-bearing 7Ni steel to pursue a better strength-toughness balance than what conventional single intercritical tempering can achieve. The mechanical properties and microstructure of cyclic IT and single IT were studied by scanning electron microscopy (SEM), electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM) in addition to dilatometry. It was found that cyclic IT can significantly improve the strength without much sacrifice of toughness. The additional strength comes from dislocation and precipitation strengthening. The mechanism of reverse transformation was studied, and it was found that the mechanism changes from diffusional at single IT or first-cycle IT to a combination of interface-dominated and diffusional at the following cyclic IT. It was suggested that enrichment of Ni after the first cyclic IT is responsible for the mechanism change by thermodynamic calculation. Furthermore, although the Ni content is higher in fresh martensite (FM) after following cyclic IT, no distinct decrease of Ms was found, which is related to the inhomogeneous elemental distribution of FM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. S. W. Thompson, D. J. Vincol and G. Krauss: Metall. Trans. A, 1990, vol. 216, pp. 1493-507

    Google Scholar 

  2. 2. M. Mujahid, A. Lis, C. Garcia and A. DeArdo: J. Mater. Eng. Perform., 1998, vol. 72, pp. 247-57

    Google Scholar 

  3. S. Thompson: Mater. Sci. Eng. A, 2018, vol. 711, pp. 424-33

    CAS  Google Scholar 

  4. 4. L. Han, Q. Liu and J. Gu: Chinese Journal of Mechanical Engineering, 2019, vol. 321, p. 81

    Google Scholar 

  5. 5. M. Kapoor, D. Isheim, G. Ghosh, S. Vaynman, M. E. Fine and Y.-W. Chung: Acta Mater., 2014, vol. 73, pp. 56-74

    CAS  Google Scholar 

  6. 6. M. Kapoor, D. Isheim, S. Vaynman, M. Fine and Y.-W. Chung: Acta Mater., 2016, vol. 104, pp. 166-71

    CAS  Google Scholar 

  7. 7. S. Vaynman, D. Isheim, R. P. Kolli, S. P. Bhat, D. N. Seidman and M. E. Fine: Metall. Mater. Trans. A, 2008, vol. 392, pp. 363-73

    Google Scholar 

  8. 8. R. P. Kolli and D. N. Seidman: Acta Mater., 2008, vol. 569, pp. 2073-88

    Google Scholar 

  9. 9. Z. Jiao, J. Luan, M. Miller and C. Liu: Acta Mater., 2015, vol. 97, pp. 58-67

    CAS  Google Scholar 

  10. 10. Z. Jiao, J. Luan, M. Miller, Y.-W. Chung and C. Liu: Mater. Today, 2017, vol. 203, pp. 142-54

    Google Scholar 

  11. 11. S. K. Dhua, D. Mukerjee and D. S. Sarma: Metall. Mater. Trans. A, 2001, vol. 329, pp. 2259-70

    Google Scholar 

  12. Y. Song, D. Ping, F. Yin, X. Li and Y. Li: Mater. Sci. Eng. A, 2010, vol. 5273, pp. 614-18

    Google Scholar 

  13. 13. Z. Xie, S. Yuan, W. Zhou, J. Yang, H. Guo and C. Shang: Materials & Design, 2014, vol. 59, pp. 193-98

    CAS  Google Scholar 

  14. S. K. Dhua, A. Ray and D. S. Sarma: Mater. Sci. Eng. A, 2001, vol. 3181, pp. 197-210

    Google Scholar 

  15. A.D. Wilson, E.G. Hamburg, D.J. Colvin, S.W. Thompson, and G. Krauss: Microalloyed HSLA Steels, 1988, p. 16

  16. D. Edmonds, K. He, F. Rizzo, B. De Cooman, D. Matlock and J. Speer: Mater. Sci. Eng. A, 2006, vol. 438, pp. 25-34

    Google Scholar 

  17. 17. E. J. Seo, L. Cho, Y. Estrin and B. C. De Cooman: Acta Mater., 2016, vol. 113, pp. 124-39

    CAS  Google Scholar 

  18. W. Zhou, H. Guo, Z. Xie, X. Wang and C. Shang: Mater. Sci. Eng. A, 2013, vol. 587, pp. 365-71

    CAS  Google Scholar 

  19. 19. A. Arlazarov, M. Gouné, O. Bouaziz and A. Hazotte: Philos. Mag. Lett., 2017, vol. 974, pp. 125-31

    Google Scholar 

  20. 20. J. Kim, C. Syn and J. Morris: Metall. Trans. A, 1983, vol. 141, pp. 93-103

    Google Scholar 

  21. 21. J. W. Morris Jr: ISIJ Int., 2011, vol. 5110, pp. 1569-75

    Google Scholar 

  22. 22. Z. Xie, G. Han, Y. Yu, C. Shang and R. Misra: Mater. Charact., 2019, vol. 153, pp. 208-14

    CAS  Google Scholar 

  23. W. Zhou, X. Wang, P. Venkatsurya, H. Guo, C. Shang and R. Misra: Mater. Sci. Eng. A, 2014, vol. 607, pp. 569-77

    CAS  Google Scholar 

  24. W. Hou, Q. Liu and J. Gu: Mater. Sci. Eng. A, 2020, vol. 780, p. 139186

    CAS  Google Scholar 

  25. 25. J. Han, A. K. da Silva, D. Ponge, D. Raabe, S.-M. Lee, Y.-K. Lee, S.-I. Lee and B. Hwang: Acta Mater., 2017, vol. 122, pp. 199-206

    CAS  Google Scholar 

  26. 26. J. Zhu, R. Ding, J. He, Z. Yang, C. Zhang and H. Chen: Scripta Mater., 2017, vol. 136, pp. 6-10

    CAS  Google Scholar 

  27. 27. S. Hwang and J. Morris: Metall. Trans. A, 1979, vol. 105, p. 545

    Google Scholar 

  28. 28. H. Koohdar, M. Nili-Ahmadabadi, M. Habibi-Parsa, H. R. Jafarian, T. Bhattacharjee and N. Tsuji: Metall. Mater. Trans. A, 2017, vol. 4811, pp. 5244-57

    Google Scholar 

  29. 29. R. Ding, Z. Dai, M. Huang, Z. Yang, C. Zhang and H. Chen: Acta Mater., 2018, vol. 147, pp. 59-69

    CAS  Google Scholar 

  30. 30. T. Ungár, S. Ott, P. Sanders, A. Borbély and J. Weertman: Acta Mater., 1998, vol. 4610, pp. 3693-99

    Google Scholar 

  31. 31. S. Takebayashi, T. Kunieda, N. Yoshinaga, K. Ushioda and S. Ogata: ISIJ Int., 2010, vol. 506, pp. 875-82

    Google Scholar 

  32. 32. R. W. Fonda and G. Spanos: Metall. Mater. Trans. A, 2014, vol. 4513, pp. 5982-89

    Google Scholar 

  33. 33. D. Jain, D. Isheim, X. J. Zhang, G. Ghosh and D. N. Seidman: Metall. Mater. Trans. A, 2017, vol. 488, pp. 3642-54

    Google Scholar 

  34. 34. E. J. Barrick, D. Jain, J. N. DuPont and D. N. Seidman: Metall. Mater. Trans. A, 2017, vol. 4812, pp. 5890-910

    Google Scholar 

  35. R. Fonda, G. Spanos and R. Vandermeer: Scripta Metall. Mater. (United States), 1994, vol. 316.

  36. M. Calcagnotto, D. Ponge, E. Demir and D. Raabe: Mater. Sci. Eng. A, 2010, vol. 52710, pp. 2738-46

    Google Scholar 

  37. 37. X. Zhang, G. Miyamoto, Y. Toji, S. Nambu, T. Koseki and T. Furuhara: Acta Mater., 2018, vol. 144, pp. 601-12

    CAS  Google Scholar 

  38. M. Calcagnotto, D. Ponge, E. Demir and D. Raabe: Mater. Sci. Eng. A, 2010, vol. 52710-11, pp. 2738-46

    Google Scholar 

  39. 39. H. Gao, Y. Huang, W. Nix and J. Hutchinson: Journal of the Mechanics and Physics of Solids, 1999, vol. 476, pp. 1239-63

    Google Scholar 

  40. 40. L. Lim and T. Watanabe: Acta metallurgica et materialia, 1990, vol. 3812, pp. 2507-16

    Google Scholar 

  41. 41. T. Watanabe and S. Tsurekawa: Acta Mater., 1999, vol. 4715-16, pp. 4171-85

    Google Scholar 

  42. 42. T. Watanabe: Journal of materials science, 2011, vol. 4612, pp. 4095-115

    Google Scholar 

  43. 43. S. Das, A. Ghosh, S. Chatterjee and P. R. Rao: Scripta Mater., 2003, vol. 481, pp. 51-57

    Google Scholar 

  44. 44. J. Bailey and P. Hirsch: Philosophical Magazine, 1960, vol. 553, pp. 485-97

    Google Scholar 

  45. 45. K. Nakashima, Y. Futamura, T. Tsuchiyama and S. Takaki: ISIJ Int., 2002, vol. 4212, pp. 1541-45

    Google Scholar 

  46. 46. F. Moszner, E. Povoden-Karadeniz, S. Pogatscher, P. Uggowitzer, Y. Estrin, S. Gerstl, E. Kozeschnik and J. F. Löffler: Acta Mater., 2014, vol. 72, pp. 99-109

    CAS  Google Scholar 

  47. 47. J. Han and Y.-K. Lee: Acta Mater., 2014, vol. 67, pp. 354-61

    CAS  Google Scholar 

  48. 48. D. Yang, D. Wu and H. Yi: Scripta Mater., 2019, vol. 161, pp. 1-5

    CAS  Google Scholar 

  49. R. Kapoor, L. Kumar and I. Batra: Mater. Sci. Eng. A, 2003, vol. 3521, pp. 318-24

    Google Scholar 

  50. 50. Y.-K. Lee: Metall. Mater. Trans. A, 2002, vol. 337, pp. 1913-17

    Google Scholar 

  51. 51. J. Hidalgo and M. J. Santofimia: Metall. Mater. Trans. A, 2016, vol. 4711, pp. 5288-301

    Google Scholar 

  52. 52. Y. Matsuoka, T. Iwasaki, N. Nakada, T. Tsuchiyama and S. Takaki: ISIJ Int., 2013, vol. 537, pp. 1224-30

    Google Scholar 

  53. 53. S. Takaki, K. Fukunaga, J. Syarif and T. Tsuchiyama: Materials Transactions, 2004, vol. 457, pp. 2245-51

    Google Scholar 

  54. 54. K. Ishida: J. Alloys Compd., 1995, vol. 2201-2, pp. 126-31

    Google Scholar 

  55. 55. K. Zhu, H. Chen, J.-P. Masse, O. Bouaziz and G. Gachet: Acta Mater., 2013, vol. 6116, pp. 6025-36

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qingdong Liu or Jianfeng Gu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted December 2, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, W., Liu, Q., Wen, H. et al. Effect of Cyclic Intercritical Tempering on the Microstructure and Mechanical Properties of a Low-Carbon Cu-Bearing 7Ni Steel. Metall Mater Trans A 51, 3981–3995 (2020). https://doi.org/10.1007/s11661-020-05811-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05811-3

Navigation