Skip to main content
Log in

Delaying Effect of Cementite on Recrystallization Kinetics of a Ti-Nb Microalloyed High-Formability Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Annealing of cold-rolled high-strength steels leads to various microstructural changes such as recrystallization, cementite precipitation, microalloying elements precipitation and austenite formation. These transformations are expected to interact with each other. Understanding how and where austenite forms in a microstructure is of prime importance to avoid formation of banded microstructures, which are detrimental to good in-use properties. In this work, a mean-field model is used to simulate concomitant recrystallization, cementite precipitation, microalloying elements precipitation and austenite formation kinetics, as well as their interactions during 1 and 10 °C/s heating. Excellent agreement with experimental data is obtained only if cementite pinning effect on recrystallized grain boundaries is considered. It is shown that cementite exhibits a much stronger delaying effect on recrystallization kinetics than microalloying elements, leading to the formation of banded microstructures. Carbon nominal content of a steel appears to be the most important parameter to acknowledge to understand recrystallization kinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. 1. O. Bouaziz, H. Zurob, and M. Huang: Steel Res. Int., 2013, vol. 12, pp. 937–47.

    Google Scholar 

  2. D. Bhattacharya: Tecnologia em Metalurgia Materiais e Mineração, 2014, vol. 11, pp. 371–83.

    CAS  Google Scholar 

  3. N. Fonstein: Advanced High Strength Sheet Steels : Physical Metallurgy, Design, Processing, and Properties, Springer, Berlin, 2015.

    Google Scholar 

  4. C.I. Garcia and A.J. Deardo: Metallurgical Transactions A, 1981, vol. 12, pp. 521–30.

    CAS  Google Scholar 

  5. G.R. Speich, V.A. Demarest, and R.L. Miller: Metallurgical and Materials Transactions A, 1981, vol. 12, pp. 1419–28.

    CAS  Google Scholar 

  6. D.Z. Yang, E.L. Brown, D.K. Matlock, and G. Krauss: Metallurgical Transactions A, 1985, vol. 16, pp. 1385–92.

    Google Scholar 

  7. J. Huang, W.J. Poole, and M. Militzer: Metallurgical and Materials Transactions A, 2004, vol. 35, pp. 3363–75.

    Google Scholar 

  8. F.G. Caballero, A. García-Junceda, C. Capdevila, and C. García de Andrés: Materials Transactions, 2006, vol. 47, pp. 2269–76.

    CAS  Google Scholar 

  9. D. San Martín, T. de Cock, A. García-Junceda, F.G. Caballero, C. Capdevila, and C.G. de Andrés (2008) Mater. Sci. Technol. 24:266–72

    Google Scholar 

  10. T. Ogawa, N. Maruyama, N. Sugiura, and N. Yoshinaga: ISIJ International, 2010, vol. 50, pp. 46–475.

    Google Scholar 

  11. V.H. BaltazarHernandez, S.S. Nayak, Y. Zhou (2011) Metall. Mater. Trans. A 42:3115–29

    CAS  Google Scholar 

  12. H. Azizi-Alizamini, M. Militzer, and W.J. Poole: Metallurgical and Materials Transactions A, 2011, vol. 42, pp. 1544–57.

    CAS  Google Scholar 

  13. M. Kulakov, W.J. Poole, and M. Militzer: Metallurgical and Materials Transactions A, 2013, vol. 44, pp. 3564–76.

    CAS  Google Scholar 

  14. P. Li, J. Li, Q. Meng, W. Hu, and D. Xu: Journal of Alloys and Compounds, 2013, vol. 578, pp. 320–7.

    CAS  Google Scholar 

  15. R. Wei, M. Enomoto, R. Hadian, H.S. Zurob, and G.R. Purdy: Acta Materialia, 2013, vol. 61, pp. 697–707.

    CAS  Google Scholar 

  16. A. Chbihi, D. Barbier, L. Germain, A. Hazotte, and M. Gouné: Journal of Materials Science, 2014, vol. 49, pp. 3608–21.

    CAS  Google Scholar 

  17. M. Kulakov, W.J. Poole, and M. Militzer: ISIJ International, 2014, vol. 54, pp. 2627–36.

    CAS  Google Scholar 

  18. C. Philippot, J. Drillet, P. Maugis, V. Hebert, and M. Dumont: Metallurgical Research and Technology, 2014, vol. 111, pp. 3–8.

    CAS  Google Scholar 

  19. D. Barbier, L. Germain, A. Hazotte, M. Gouné, and A. Chbihi: Journal of Materials Science, 2015, vol. 50, pp. 374–81.

    CAS  Google Scholar 

  20. T. Ogawa: International Journal of Mechanical and Materials Engineering, 2015, vol. 10, p. 22.

    Google Scholar 

  21. F. CastroCerda, B. Schulz, S. Papaefthymiou, A. Artigas, A. Monsalve, R. Petrov (2016) Metals 6:321

    Google Scholar 

  22. F.M. CastroCerda, I. Sabirov, C. Goulas, J. Sietsma, A. Monsalve, R.H. Petrov (2017) Mater. Des. 116:448–60

    CAS  Google Scholar 

  23. M. Ollat, V. Massardier, D. Fabregue, E. Buscarlet, F. Keovilay, and M. Perez: Metallurgical and Materials Transactions A, 2017, vol. 48, pp. 4486–99.

    CAS  Google Scholar 

  24. M. Bellavoine, M. Dumont, J. Drillet, V. Hébert, and P. Maugis: Metallurgical and Materials Transactions A, 2018, vol. 49, pp. 2865–75.

    CAS  Google Scholar 

  25. J.J. Jonas and I. Weiss: Metal Science, 1979, vol. 13, pp. 238–45.

    CAS  Google Scholar 

  26. A. Deschamps, F. Livet, and Y. Bréchet: Acta Materialia, 1998, vol. 47, pp. 281–92.

    Google Scholar 

  27. A. Deschamps and Y. Bréchet: Acta Materialia, 1998, vol. 47, pp. 293–305.

    Google Scholar 

  28. H.S. Zurob, Y. Brechet, and G. Purdy: Acta Materialia, 2001, vol. 49, pp. 4183–90.

    CAS  Google Scholar 

  29. V. Andrade-Carozzo and P. Jacques: Materials Science Forum, 2007, vol. 539–543, pp. 4649–54.

    Google Scholar 

  30. Y.J.M. Bréchet, C.R. Hutchinson, H.S. Zurob, C.W. Sinclair (2007) Steel Res. Int. 78:210–15

    Google Scholar 

  31. C.W. Sinclair, C.R. Hutchinson, and Y. Bréchet: Metallurgical and Materials Transactions A, 2007, vol. 38, pp. 821–30.

    Google Scholar 

  32. O. Girina, N. Fonstein, and D. Bhattacharya: vol. 1 : Plenary Lectures Automotive Applications, Oils and Gas Applications, High Temperature Applications of High Strength Steels, Buenos Aires, 2008, pp. 29–35.

  33. C.R. Hutchinson, H.S. Zurob, C.W. Sinclair, and Y.J.M. Brechet: Scripta Materialia, 2008, vol. 59, pp. 635–37.

    CAS  Google Scholar 

  34. M. Perez and A. Deschamps: Materials Science and Engineering: A, 2003, vol. 360, pp. 214–19.

    Google Scholar 

  35. Y. Wang, S. Denis, B. Appolaire, and P. Archambault: J. Phys. IV France, 2004, vol. 120, pp. 103–10.

    CAS  Google Scholar 

  36. Y. Yang, B. Wang, Z.D. Wang, Y.M. Li, G.D. Wang, and R.D.K. Misra: in Materials Science Forum, vol. 898, Trans Tech Publ, 2017, pp. 832–39.

  37. J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D.J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona: Nature Methods, 2012, vol. 9, p. 676.

    CAS  Google Scholar 

  38. F.J. Humphreys, M. Hatherly (2004) Recrystallization and Related Annealing Phenomena, 2 edn. Elsevier, New York

    Google Scholar 

  39. W. Johnson, R. Mehl (1939) Transactions of the AIME. 135:416–58

    Google Scholar 

  40. M. Avrami: The Journal of Chemical Physics, 1939, vol. 7, pp. 1103–12.

    CAS  Google Scholar 

  41. M. Avrami: The Journal of Chemical Physics, 1940, vol. 8, pp. 212–24.

    CAS  Google Scholar 

  42. M. Avrami: The Journal of Chemical Physics, 1941, vol. 9, pp. 177–84.

    CAS  Google Scholar 

  43. A.N. Shiryayev: in Selected Works of A. N. Kolmogorov, A.N. Shiryayev, ed., Springer Netherlands, Dordrecht, 1992, pp. 188–92.

  44. J.-O. Andersson, T. Helander, L. Höglund, P. Shi, and B. Sundman: Calphad, 2002, vol. 26, pp. 273–312.

    CAS  Google Scholar 

  45. Thermo-Calc Software TCFE9 Steels/Fe-Alloys Database (Accessed on 26.09.2019).

  46. C. Bos, M.G. Mecozzi, and J. Sietsma: Computational Materials Science, 2010, vol. 48, pp. 692–9.

    CAS  Google Scholar 

  47. E. Gamsjäger, H. Chen, and S. van der Zwaag: Computational Materials Science, 2014, vol. 83, pp. 92–100.

    Google Scholar 

  48. M.G. Mecozzi, C. Bos, and J. Sietsma: Acta Materialia, 2015, vol. 88, pp. 302–13.

    CAS  Google Scholar 

  49. C. Zheng and D. Raabe: Acta Materialia, 2013, vol. 61, pp. 5504–17.

    CAS  Google Scholar 

  50. M. Hillert and L. Höglund: Scripta Materialia, 2006, vol. 54, pp. 1259–63.

    CAS  Google Scholar 

  51. F. Huyan, J.-Y. Yan, L. Höglund, J. Ågren, and A. Borgenstam: Metallurgical and Materials Transactions A, 2018, vol. 49, pp. 1053–60.

    CAS  Google Scholar 

  52. E. Gamsjäger, M. Militzer, F. Fazeli, J. Svoboda, and F.D. Fischer: Computational Materials Science, 2006, vol. 37, pp. 94–100.

    Google Scholar 

  53. Y.X. Wu, W.W. Sun, M.J. Styles, A. Arlazarov, and C.R. Hutchinson: Acta Materialia, 2018, vol. 159, pp. 209–24.

    CAS  Google Scholar 

  54. B. Zhu and M. Militzer: Modelling Simul. Mater. Sci. Eng., 2012, vol. 20, art. no. 085011.

    Google Scholar 

  55. M. Gouné, P. Maugis, and F. Danoix: Nanotechnology Reviews, 2015, vol. 4, pp. 517–32.

    Google Scholar 

  56. P. Maugis and M. Gouné: Acta Materialia, 2005, vol. 53, pp. 3359–67.

    CAS  Google Scholar 

  57. B. Noble and S.E. Bray: Materials Science and Engineering: A, 1999, vol. 266, pp. 80–85.

    Google Scholar 

  58. M. Perez, E. Courtois, D. Acevedo, T. Epicier, and P. Maugis: Philosophical Magazine Letters, 2007, vol. 87, pp. 645–56.

    CAS  Google Scholar 

  59. M. Gouné, J. Drillet, and P. Maugis: Computational Materials Science, 2012, vol. 55, pp. 127–35.

    Google Scholar 

  60. J.H. Jang, C.-H. Lee, H.N. Han, H.K.D.H. Bhadeshia, and D.-W. Suh: Materials Science and Technology, 2013, vol. 29, pp. 1074–79.

    CAS  Google Scholar 

  61. D. Gendt: Thèse de doctorat, Université Paris XI, 2001.

  62. F. Perrard, A. Deschamps, and P. Maugis: Acta Materialia, 2007, vol. 55, pp. 1255–66.

    CAS  Google Scholar 

  63. T. Gladman (2002) The Physical Metallurgy of Microalloyed Steels. Maney, London

    Google Scholar 

  64. A.J. DeArdo: International Materials Reviews, 2003, vol. 48, pp. 371–402.

    CAS  Google Scholar 

  65. L.E. Samuels: Metallogr. Microstruct. Anal., 2014, vol. 3, pp. 70–90.

    Google Scholar 

  66. J.W. Martin, R.D. Doherty, B. Cantor (1997) Stability of Microstructure in Metallic Systems, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  67. S. Zamberger, L. Whitmore, S. Krisam, T. Wojcik, and E. Kozeschnik: Modelling and Simulation in Materials Science and Engineering, 2015, vol. 23, p. 055012.

    Google Scholar 

  68. M. Hillert: Acta Metallurgica, 1959, vol. 7, pp. 653–58.

    CAS  Google Scholar 

  69. P. Maugis, F. Danoix, M. Dumont, S. Curelea, S. Cazottes, H. Zapolsky, and M. Gouné: Materials Letters, 2018, vol. 214, pp. 213–16.

    CAS  Google Scholar 

  70. D.A. Porter and K.E. Easterling: Phase Transformations in Metals and Alloys, 3rd edn., Springer US, 1992.

    Google Scholar 

Download references

Acknowledgments

This project was supported by the National Association of Research and Technology (ANRT—Project No 2017/0799). P. Barges is thanked for TEM training and assistance. Dr. G. Da Rosa is also gratefully acknowledged for fruitful discussions about microstructural evolutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur Marceaux dit Clément.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted March 2, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marceaux dit Clément, A., Hoummada, K., Drillet, J. et al. Delaying Effect of Cementite on Recrystallization Kinetics of a Ti-Nb Microalloyed High-Formability Steel. Metall Mater Trans A 51, 4059–4073 (2020). https://doi.org/10.1007/s11661-020-05859-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05859-1

Navigation