Skip to main content
Log in

On the Degradation of Retained Austenite in Transformation Induced Plasticity Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A transformation-induced plasticity steel was thermomechanically processed and then transformed to bainite at an isothermal transformation temperature of 723 K for 1800 seconds, which exceeds the time required for completion of the bainite transformation. The formation of lenticular-shaped carbides with a triclinic lattice and internal substructure was found after thermomechanical processing. After 16 years of storage at room temperature, the decomposition of retained austenite into pearlite was observed for the first time at this temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. [1] B.C. De Cooman, Curr. Opin. Solid State Mater. Sci., 2004, vol. 8(3–4), pp. 285-303.

    Article  Google Scholar 

  2. [2] P.J. Jacques, Curr. Opin. Solid State Mater. Sci., 2004, vol. 8, pp. 259-265.

    Article  CAS  Google Scholar 

  3. [3] O. Matsumura, Y. Sakuma, H. Takechi, Scripta Metall., 1987, vol. 21, pp. 1301-1306.

    Article  CAS  Google Scholar 

  4. [4] I.B. Timokhina, P.D. Hodgson, E.V. Pereloma, Metall. Mater. Trans. A, 2004, vol. 35A(8), pp. 2331-2341.

    Article  CAS  Google Scholar 

  5. [5] E. Pereloma, H. Beladi, L. Zhang, I. Timokhina, Metall. Mater. Trans. A, 2012, vol. 43A, pp. 3958-3971.

    Article  Google Scholar 

  6. [6] F.G. Caballero, H.K.D.H. Bhadeshia, K.J.A. Mawella, D.J. Jones, P. Brown, Mater. Sci. Technol., 2002, vol. 18(3), pp. 279-284.

    Article  CAS  Google Scholar 

  7. [7] F.G. Caballero, H.K.D.H. Bhadeshia, Curr. Opin. Solid State Mater. Sci., 2004, vol. 8(3), pp. 251-257.

    Article  CAS  Google Scholar 

  8. [8] F. Caballero, C. Garcia-Mateo, M. Miller, Mater. Sci. Technol., 2015, vol. 31, pp. 764-772.

    Article  CAS  Google Scholar 

  9. [9] J. Speer, D.K. Matlock, B.C. De Cooman, J.G. Schroth, Acta Mater., 2003, vol. 51(9), pp. 2611-2622.

    Article  CAS  Google Scholar 

  10. [10] D.V. Edmonds, K. He, F.C. Rizzo, B.C. De Cooman, D.K. Matlock, J.G. Speer, Mater. Sci. Eng. A, 2006, vol. 438-440, pp. 25-34.

    Article  Google Scholar 

  11. [11] L. Liu, B. He, G.-J. Cheng, H.-W. Yen, M.X. Huang, Scr. Mater. 2018, vol. 150, pp. 1-6.

    Article  CAS  Google Scholar 

  12. [12] X. Tan, D. Ponge, W. Lu, Y. Xu, X. Yang, X. Rao, D. Wu, D. Raabe, Acta Mater., 2019, vol. 165, pp. 561-576.

    Article  CAS  Google Scholar 

  13. [13] T. Furukawa, H. Huang, O. Matsumura, Mater. Sci. Technol., 1994, vol. 10, pp. 964-970.

    Article  CAS  Google Scholar 

  14. [14] D.W. Suh, J.H. Ryu, M.S. Joo, H.S. Yang, K. Lee, H.K.D.H. Bhadeshia, Metall. Mater. Trans. A, 2013, vol. 44A, pp. 286-293.

    Article  Google Scholar 

  15. [15] Y.-K. Lee, J. Han, Mater. Sci. Technol., 2015, vol. 31(7), pp. 834-856.

    Article  Google Scholar 

  16. [16] H.K.D.H. Bhadeshia, D. Edmonds, Metall. Trans. A, 1979, vol. 10, pp. 895-907.

    Article  Google Scholar 

  17. [17] H.K.D.H. Bhadeshia, Bainite in Steels: Transformations, Microstructure and Properties, Second ed. ed., Institute of Materials, Minerals and Mining, London, 2001.

    Google Scholar 

  18. [18] E. Pereloma, A.A. Gazder, I. Timokhina, Retained austenite: transformation-induced plasticity, in: R. Colas, G.E. Totten (Eds.) Encyclopedia of Iron, Steel, and Their Alloys, CRC Press, New York, 2016, pp. 3088-3103.

    Chapter  Google Scholar 

  19. [19] E. De Moor, D.K. Matlock, J.G. Speer, M.J. Merwin, Scr. Mater.,2011, vol. 64(2), pp. 185-188.

    Article  Google Scholar 

  20. [20] A.S. Podder, I. Lonardelli, A. Molinari, H.K.D.H. Bhadeshia, Proc. R. Soc. A, 2011, vol. 467, pp. 3141-3156.

    Article  CAS  Google Scholar 

  21. [21] W. Shi, L. Li, B.C. De Cooman, P. Wollants, C.-X. Yang, J. Iron Steel Res. Int., 2008, vol. 15, pp. 61-64.

    Article  CAS  Google Scholar 

  22. [22] C. Lerchbacher, S. Zinner, H. Leitner, Mater. Sci. Eng. A, 2013, vol. 564, pp. 163 - 168.

    Article  CAS  Google Scholar 

  23. [23] A.S. Podder, H.K.D.H. Bhadeshia, Mater. Sci. Eng. A, 2010, vol. 527(7), pp. 2121 - 2128.

    Article  Google Scholar 

  24. [24] C. Garcia-Mateo, F.G. Caballero, M.K. Miller, J.A. Jimenez, J. Mater. Sci., 2012, vol. 47(2) pp. 1004-1010.

    Article  CAS  Google Scholar 

  25. [25] Z.P. Xiong, A.A. Saleh, R.K.W. Marceau, A.S. Taylor, N.E. Stanford, A.G. Kostryzhev, E.V. Pereloma, Acta Mater., 2017, vol. 134, pp. 1 - 15.

    Article  CAS  Google Scholar 

  26. [26] H.-S. Park, J.-B. Seol, N.-S. Lim, S.-I. Kim, C.-G. Park, Mater. Des., 2015, vol. 82, pp. 173 - 180.

    Article  CAS  Google Scholar 

  27. [27] Y.K. Lee, H.C. Shin, Y.C. Jang, S.H. Kim, C.S. Choi, Scr. Mater., 2002, vol. 47(12), pp. 805 - 809.

    Article  CAS  Google Scholar 

  28. [28] F.G. Caballero, C. Garcia-Mateo, C. Garcia de Andres, Metall. Trans. A, 2005, vol. 46(3), pp. 581-586.

    CAS  Google Scholar 

  29. [29] B.P.J. Sandvik, MTA, 1982, vol. 13(5), pp. 777-787.

    Article  CAS  Google Scholar 

  30. [30] I.B. Timokhina, P.D. Hodgson, E.V. Pereloma, in: E.F. Palmiere, M. Mahfouf, C. Pinna (Eds.) International Conference on Thermomechanical Processing: Mechanics, Microstructure & Control, Sheffield University, UK, 2003, pp. 115-121.

    Google Scholar 

  31. [31] E.V. Pereloma, I.B. Timokhina, M.K. Miller, P.D. Hodgson, Acta Mater., 2007, vol. 55(8), pp. 2587-2598.

    Article  CAS  Google Scholar 

  32. [32] I.B. Timokhina, E.V. Pereloma, P.D. Hodgson, Mater. Sci. Technol., 2001, vol. 17(2), pp. 135-140.

    Article  CAS  Google Scholar 

  33. [33] B.D. Cullity, Elements of x-ray diffraction, Addison-Wesley Publishing Company, Inc., Reading, MA, 1978.

    Google Scholar 

  34. [34] A.A. Gazder, F. Al-Harbi, H.T. Spanke, D.R.G. Mitchell, E.V. Pereloma, Ultramicroscopy, 2014, vol. 147, pp. 114-132.

    Article  CAS  Google Scholar 

  35. C. Sommer, C. Straehle, U. Koethe, F.A. Hamprecht, Ilastik: Interactive Learning and Segmentation Toolkit, IEEE International Symposium on Biomedical Imaging, https://doi.org/10.1109/isbi.2011.5872394. ISBN 978-1-4244-4127-3, 2011, pp. 230–33.

  36. [36] M.K. Miller, R.G. Forbes, Atom-Probe Tomography: The Local Electro Atom Probe, Springer, New York, 2014.

    Book  Google Scholar 

  37. [37] J.O. Andersson, T. Helander, L. Höglund, P. Shi, B. Sundman, Calphad, 2002, vol. 26(2), pp. 273-312.

    Article  CAS  Google Scholar 

  38. [38] Y. Hirotsu, S. Nagakura, Acta Metall., 1972, vol. 20(4), pp. 645-655.

    Article  CAS  Google Scholar 

  39. [39] H.K.D.H. Bhadeshia, Acta Metall., 1980, vol. 28(8), pp. 1103-1114.

    Article  CAS  Google Scholar 

  40. [40] Y.C. Jung, Y. Ohomori, K. Nakai, H. Ohtsubo, ISIJ Int., 1997, vol. 37(8), pp. 789-796.

    Article  CAS  Google Scholar 

  41. [41] J. Yan, J. Ågren, J. Jeppsson, Metall. Mater. Trans. A. 2020, vol. 51A, pp. 1978–2001. https://doi.org/10.1007/s11661-020-05679-3.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support of Deakin University and the University of Wollongong, Australia. Deakin University’s Advanced Characterisation Facility is acknowledged for use of the FIB-SEM, TEM, and APT. The JEOL JSM-7001F at the UOW-EMC was funded by the Australian Research Council—Linkage, Infrastructure, Equipment and Facilities Grant LE0882613. The Oxford Instruments 80 mm2 X-Max EDS detector was funded via the 2012 UOW Major Equipment Grant scheme. A. Gazder acknowledges the 2019 AIIM for Gold - Investigator Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilana B. Timokhina.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted March 1, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Timokhina, I.B., Gazder, A.A., Wang, J. et al. On the Degradation of Retained Austenite in Transformation Induced Plasticity Steel. Metall Mater Trans A 51, 3802–3810 (2020). https://doi.org/10.1007/s11661-020-05823-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05823-z

Navigation