Skip to main content
Log in

Higher depth quantum modular forms and plumbed 3-manifolds

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper, we study new invariants \(\widehat{Z}_{{{\varvec{a}}}}(q)\) attached to plumbed 3-manifolds that were introduced by Gukov, Pei, Putrov, and Vafa. These remarkable q-series at radial limits conjecturally compute WRT invariants of the corresponding plumbed 3-manifold. Here, we investigate the series \(\widehat{Z}_{0}(q)\) for unimodular plumbing H-graphs with six vertices. We prove that for every positive definite unimodular plumbing matrix, \(\widehat{Z}_{0}(q)\) is a depth two quantum modular form on \({\mathbb {Q}}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. In [15], M is negative definite, which we account for by replacing it with \(-M\) when referring to their work.

References

  1. Alexandrov, S., Banerjee, S., Manschot, J., Pioline, B.: Indefinite theta series and generalized error functions. Sel. Math. (N.S.) 24, 3927–3972 (2018)

    Article  MathSciNet  Google Scholar 

  2. Berndt, B., Evans, R., Williams, K.: Gauss and Jacobi Sums, Canadian Mathematical Society Series of Monographs and Advanced Texts. Wiley, New York (1998)

    Google Scholar 

  3. Bringmann, K., Kaszian, J., Milas, A.: Some examples of higher depth vector-valued quantum modular forms. In: Accepted for publication in the Proceedings of Ramanujan’s 130th Birthday Conference in Ropar

  4. Bringmann, K., Kaszian, J., Milas, A.: Higher depth quantum modular forms, multiple Eichler integrals, and \(\mathfrak{sl}_3\) false theta functions. Res. Math. Sci. 6, 20 (2019)

    Article  Google Scholar 

  5. Bringmann, K., Kaszian, J., Milas, A., Zwegers, S.: Rank two false theta functions and Jacobi forms of negative definite matrix index. Adv. Appl. Math. 112, 101946 (2020). (accepted for publication)

    Article  MathSciNet  Google Scholar 

  6. Bringmann, K., Mahlburg, K., Milas, A.: Quantum modular forms and plumbing graphs of 3-manifolds. arXiv:1810.05612

  7. Bringmann, K., Milas, A.: \(W\)-Algebras, False Theta Functions and Quantum Modular Forms, I. Int. Math. Res. Not. 21, 11351–11387 (2015)

    Article  MathSciNet  Google Scholar 

  8. Bringmann, K., Rolen, L., Zwegers, S.: On the Fourier coefficients of negative index meromorphic Jacobi forms. Res. Math. Sci. 3, 5 (2016)

    Article  MathSciNet  Google Scholar 

  9. Cheng, M., Chun, S., Ferrari, F., Gukov, S., Harrison, S.: 3d Modularity. arXiv:1809.10148

  10. Chung, H.: BPS Invariants for Seifert Manifolds. arXiv:1811.08863

  11. Creutzig, T., Milas, A., Wood, S.: On regularised quantum dimensions of the singlet vertex operator algebra and false theta functions. Int. Math. Res. Not. 5, 1390–1432 (2016)

    MATH  Google Scholar 

  12. Dabholkar, A., Murthy, S., Zagier, D.: Quantum Black Holes, Wall Crossing, and Mock Modular Forms, to appear in Cambridge Monographs in Mathematical Physics. arXiv:1208.4074

  13. Folsom, A., Ono, K., Rhoades, R.: Mock theta functions and quantum modular forms. Forum Math. Pi 1, (2013)

  14. Gukov, S., Manolescu, C.: A two-Variable Series for Knot Complements. arXiv:1904.06057

  15. Gukov, S., Pei, D., Putrov, P., Vafa, C.: BPS Spectra and 3-Manifold Invariants. arXiv:1701.06567

  16. Hikami, K.: Quantum invariant for torus link and modular forms. Commun. Math. Phys. 246, 403–426 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  17. Hikami, K.: On the quantum invariant for the Brieskorn homology spheres. Int. J. Math. 16, 661–685 (2005)

    Article  MathSciNet  Google Scholar 

  18. Hikami, K.: On the quantum Invariant for the spherical Seifert manifold. Commun. Math. Phys. 268, 285–319 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  19. Lawrence, R., Zagier, D.: Modular forms and quantum invariants of 3-manifolds. Asian J. Math. 3, 93–108 (1999)

    Article  MathSciNet  Google Scholar 

  20. Males, J.: A Family of Vector-valued Quantum Modular Forms of Depth Two. arXiv:1810.01341

  21. Neumann, W.: On bilinear forms represented by trees. Bull. Aust. Math. Soc. 40, 303–321 (1989)

    Article  MathSciNet  Google Scholar 

  22. Shimura, G.: On modular forms of half-integral weight. Ann. Math. 97, 440–481 (1973)

    Article  MathSciNet  Google Scholar 

  23. Zagier, D.: Quantum modular forms. Quanta Math. 11, 659–675 (2010)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank S. Chun, S. Gukov, and C. Manolescu for helpful discussion on some aspects of [15]. Moreover, we thank the anonymous referees for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antun Milas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The research of the first author was supported by the Alfried Krupp Prize for Young University Teachers of the Krupp foundation, and the research leading to these results receives funding from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement no. 335220 - AQSER. The third author was supported by NSF-DMS Grant 1601070 and a stipend from the Max Planck Institute for Mathematics, Bonn.

Appendix: Data for positive unimodular matrices

Appendix: Data for positive unimodular matrices

Here, we list all positive unimodular matrices of the form (5.1) and the corresponding parameters that appear in Z(q) (see (4.1) and Proposition 5.3). In each case, one can directly check that the assumptions in Sect. 4 are satisfied.

The value of c and the quadratic form Q are given below, and the data for \(\mathcal {S}_j\) are presented in condensed form.

  • 1. M(2, 3, 7, 1, 2, 3)

    $$\begin{aligned} Q({{\varvec{n}}})= n_1^2 + 12 n_1 n_2 + 37 n_2^2, \ c=\frac{5}{6}, \ N_1=N_2=12, \ r_1=r_2=1, \ s_1=s_2=5. \end{aligned}$$
  • 2. M(2, 7, 4, 1, 5, 2)

    $$\begin{aligned} Q({{\varvec{n}}})= & {} 21 n_1^2 + 140 n_1 n_2 + 235 n_2^2,\ c=\frac{47}{70}, \ N_1=28, N_2=20, \\ r_1= & {} 5, s_1=9, r_2=3, s_2=7. \end{aligned}$$
  • 3. M(6, 31, 3, 1, 2, 7)

    $$\begin{aligned} Q({{\varvec{n}}})= & {} 465 n_1^2 + 2604 n_1 n_2 + 3647 n_2^2, c=\frac{274}{651}, N_1=372, N_2=28, \\ r_1= & {} 149, s_1=161, r_2=5, s_2=23. \end{aligned}$$
  • 4. M(7, 18, 3, 1, 2, 7)

    $$\begin{aligned} Q({{\varvec{n}}})= & {} 45 n_1^2 + 252 n_1 n_2 + 353 n_2^2, c=\tfrac{53}{126}, N_1=252, N_2=28, \\ r_1= & {} 101, s_1=115, r_2=5, s_2=9. \end{aligned}$$
  • 5. M(3, 11, 3, 1, 2, 9)

    $$\begin{aligned} Q({{\varvec{n}}})= & {} 77 n_1^2 + 396 n_1 n_2 + 510 n_2^2, c=\tfrac{205}{396}, N_1=66, N_2=36, \\ r_1= & {} 19, s_1=25, r_2=7, s_2=11. \end{aligned}$$
  • 6. M(2, 19, 3, 1, 2, 11)

    $$\begin{aligned} Q({{\varvec{n}}})= & {} 171 n_1^2 + 836 n_1 n_2 + 1023 n_2^2, c=\frac{239}{418}, N_1=76, N_2=44, \\ r_1= & {} 17, s_1=21, r_2=9, s_2=13. \end{aligned}$$
  • 7. M(2, 3, 3, 1, 2, 27)

    $$\begin{aligned} Q({{\varvec{n}}})= & {} 25 n_1^2 + 108 n_1 n_2 + 117 n_2^2, c=\frac{37}{54}, N_1=12, N_2=108, \\ r_1= & {} 1, s_1=5, r_2=25, s_2=29. \end{aligned}$$
  • 8. M(2, 3, 3, 1, 3, 5)

    $$\begin{aligned} Q({{\varvec{n}}})= & {} 14 n_1^2 + 60 n_1 n_2 + 65 n_2^2, c=\frac{41}{60}, N_1=12, N_2=30, \\ r_1= & {} 1, s_1=5, r_2=7, s_2=13. \end{aligned}$$
  • 9. M(2, 11, 3, 1, 3, 4)

    $$\begin{aligned} Q({{\varvec{n}}})= & {} 55 n_1^2 + 264 n_1 n_2 + 318 n_2^2, c=\frac{155}{264}, N_1=44, N_2=24, \\ r_1= & {} 9, s_1=13, r_2=5, s_2=11. \end{aligned}$$
  • 10. M(3, 4, 3, 1, 3, 4)

    $$\begin{aligned} Q({{\varvec{n}}})= & {} 5 n_1^2 + 24 n_1 n_2 + 29 n_2^2, c=\tfrac{155}{264}, N_1=N_2=24, \\ r_1= & {} 5, s_1=11, r_2=5, s_2=11. \end{aligned}$$
  • 11. M(3, 7, 2, 1, 3, 97)

    $$\begin{aligned} Q({{\varvec{n}}})= & {} 1337 n_1^2+4074 n_1 n_2+3104 n_2^2, c=\frac{835}{2037}, N_1=42, N_2=582, \\ r_1= & {} 11, s_1=17, r_2=191, s_2=197. \end{aligned}$$
  • 12. M(3, 8, 2, 1, 3, 56)

    $$\begin{aligned} Q({{\varvec{n}}})= & {} 109 n_1^2+ 336 n_1 n_2+ 259 n_2^2, c=\tfrac{17}{42}, N_1=48, N_2=336, \\ r_1= & {} 13, s_1=19, r_2=109, s_2=115. \end{aligned}$$
  • 13. M(3, 47, 2, 1, 3, 17)

    $$\begin{aligned} Q({{\varvec{n}}})= & {} 1457 n_1^2 + 4794 n_1 n_2 + 3944 n_2^2, c=\frac{895}{2397}, N_1=282, N_2=102, \\ r_1= & {} 91, s_1=97, r_2=31, s_2=37. \end{aligned}$$
  • 14. M(3, 88, 2, 1, 3, 16)

    $$\begin{aligned} Q({{\varvec{n}}})= & {} 319 n_1^2 + 1056 n_1 n_2 + 874 n_2^2, c=\frac{391}{1056}, N_1=528, N_2=96, \\ r_1= & {} 173, s_1=179, r_2=29, s_2=35. \end{aligned}$$
  • 15. M(4, 5, 2, 1, 3, 47)

    $$\begin{aligned} Q({{\varvec{n}}})= & {} 1820 n_1^2 + 5640 n_1 n_2 + 4371 n_2^2, c=\frac{2263}{5640}, N_1=40, N_2=282, \\ r_1= & {} 11, s_1=19, r_2=91, s_2=97. \end{aligned}$$
  • 16. M(4, 77, 2, 1, 3, 11)

    $$\begin{aligned} Q({{\varvec{n}}})= & {} 532 n_1^2 + 1848 n_1 n_2 + 1605 n_2^2 ,c=\frac{635}{1848}, N_1=616, N_2=66, \\ r_1= & {} 227, s_1=235, r_2=19, s_2=25. \end{aligned}$$
  • 17. M(5, 16, 2, 1, 3, 11)

    $$\begin{aligned} Q({{\varvec{n}}})= & {} 1520 n_1^2 + 5280 n_1 n_2 + 4587 n_2^2,c=\frac{1813}{5280}, N_1=160, N_2=66, \\ r_1= & {} 59, s_1=69, r_2=19, s_2=25. \end{aligned}$$
  • 18. M(7, 92, 2, 1, 3, 8)

    $$\begin{aligned} Q({{\varvec{n}}})= & {} 2093 n_1^2 +7728 n_1 n_2 + 7134 n_2^2,c=\frac{2365}{7728}, N_1=1288, N_2=48, \\ r_1= & {} 545, s_1=559, r_2=13, s_2=19. \end{aligned}$$
  • 19. M(8, 35, 2, 1, 3, 8)

    $$\begin{aligned} Q({{\varvec{n}}})= & {} 455 n_1^2 + 1680 n_1 n_2 + 1551 n_2^2),c=\frac{257}{840}, N_1=560, N_2=48, \\ r_1= & {} 237, s_1=253, r_2=13, s_2=19. \end{aligned}$$
  • 20. M(11, 16, 2, 1, 3, 8)

    $$\begin{aligned} Q({{\varvec{n}}})= & {} 286 n_1^2 + 1056 n_1 n_2 + 975 n_2^2,c=\frac{323}{1056}, N_1=352, N_2=48, \\ r_1= & {} 149, s_1=171, r_2=13, s_2=19. \end{aligned}$$
  • 21. M(12, 133, 2, 1, 3, 7)

    $$\begin{aligned} Q({{\varvec{n}}})= & {} 836 n_1^2 + 3192 n_1 n_2 + 3047 n_2^2,c=\frac{905}{3192}, N_1=3192, N_2=42, \\ r_1= & {} 1451, s_1=1475, r_2=11, s_2=17. \end{aligned}$$
  • 22. M(13, 72, 2, 1, 3, 7)

    $$\begin{aligned} Q({{\varvec{n}}})= & {} 3432 n_1^2 + 13104 n_1 n_2 + 12509n_2^2,c=\frac{3715}{13104},N_1=1872,N_2=42,\\ r_1= & {} 851, s_1=877, r_2=11, s_2=17. \end{aligned}$$
  • 23. M(3, 4, 2, 1, 4, 23)

    $$\begin{aligned} Q({{\varvec{n}}})= & {} 195 n_1^2 + 552 n_1 n_2 + 391 n_2^2, c=\frac{121}{276}, N_1=24, N_2=184, \\ r_1= & {} 5, s_1=11, r_2=65, s_2=73. \end{aligned}$$
  • 24. M(3, 10, 2, 1, 4, 9)

    $$\begin{aligned} Q({{\varvec{n}}})= & {} 115 n_1^2 + 360 n_1 n_2 + 282 n_2^2,c=\frac{143}{360}, N_1=60, N_2=72, \\ r_1= & {} 17, s_1=23, r_2=23, s_2=31. \end{aligned}$$
  • 25. M(3, 52, 2, 1, 4, 7)

    $$\begin{aligned} Q({{\varvec{n}}})= & {} 663 n_1^2 + 2184 n_1 n_2 + 1799 n_2^2 ,c=\frac{407}{1092}, N_1=312, N_2=56, \\ r_1= & {} 101, s_1=107, r_2=17, s_2=25. \end{aligned}$$
  • 26. M(6, 67, 2, 1, 4, 5)

    $$\begin{aligned} Q_1({\varvec{n}})= & {} 2211n_1^2 + 8040n_1 n_2 + 7310n_2^2, c=\tfrac{2539}{8040}, N_1=804, N_2=40, \\ r_1= & {} 329, s_1=341, r_2=11, s_2=19. \end{aligned}$$
  • 27. M(2, 7, 2, 1, 4, 77)

    $$\begin{aligned} Q({{\varvec{n}}})= & {} 227 n_1^2 +616 n_1 n_2 + 418 n_2^2),c=\frac{279}{616}, N_1=28, N_2=616, \\ r_1= & {} 5, s_1=9, r_2=227, s_2=235. \end{aligned}$$
  • 28. M(7, 26, 2, 1, 4, 5)

    $$\begin{aligned} Q({{\varvec{n}}})= & {} 1001 n_1^2 + 3640 n_1 n_2 + 3310 n_2^2 ,c=\frac{1149}{3640}, N_1=364, N_2=40, \\ r_1= & {} 149, s_1=163, r_2=11, s_2=19. \end{aligned}$$
  • 29. M(2, 11, 2, 1, 4, 25)

    $$\begin{aligned} Q({{\varvec{n}}})= & {} 781 n_1^2 + 2200 n_1 n_2 + 1550 n_2^2 ,c=\frac{969}{2200}, N_1=44, N_2=200, \\ r_1= & {} 9, s_1=13, r_2=71, s_2=79. \end{aligned}$$
  • 30. M(2, 19, 2, 1, 4, 17)

    $$\begin{aligned} Q({{\varvec{n}}})= & {} 893 n_1^2 + 2584 n_1 n_2 + 1870 n_2^2 ,c=\frac{1113}{2584}, N_1=76, N_2=136, \\ r_1= & {} 17, s_1=21, r_2=47, s_2=55. \end{aligned}$$
  • 31. M(2, 71, 2, 1, 4, 13)

    $$\begin{aligned} Q({{\varvec{n}}})= & {} 2485 n_1^2 + 7384 n_1 n_2 + 5486 n_2^2 ,c=\frac{3105}{7384}, N_1=284, N_2=104, \\ r_1= & {} 69, s_1=73, r_2=35, s_2=43. \end{aligned}$$
  • 32. M(3, 7, 2, 1, 5, 7)

    $$\begin{aligned} Q({{\varvec{n}}})= & {} 69 n_1^2 + 210 n_1 n_2 + 160 n_2^2 ,c=\frac{43}{105}, N_1=42, N_2=70, \\ r_1= & {} 11, s_1=17, r_2=23, s_2=33. \end{aligned}$$
  • 33. M(2, 5, 2, 1, 5, 33)

    $$\begin{aligned} Q({{\varvec{n}}})= & {} 254 n_1^2 + 660 n_1 n_2 + 429 n_2^2,c=\frac{307}{660}, N_1=20, N_2=330, \\ r_1= & {} 3, s_1=7, r_2=127, s_2=137. \end{aligned}$$
  • 34. M(2, 7, 2, 1, 5, 16)

    $$\begin{aligned} Q({{\varvec{n}}})= & {} 413 n_1^2 + 1120 n_1 n_2 + 760 n_2^2 ,c=\frac{507}{1120}, N_1=28, N_2=160, \\ r_1= & {} 5, s_1=9, r_2=59, s_2=69. \end{aligned}$$
  • 35.M(2, 21, 2, 1, 5, 9)

    $$\begin{aligned} Q({{\varvec{n}}})= & {} 434 n_1^2 + 1260 n_1 n_2 + 915 n_2^2 ,c=\frac{541}{1260}, N_1=84, N_2=90, \\ r_1= & {} 19, s_1=23, r_2=31, s_2=41. \end{aligned}$$
  • 36. M(2, 55, 2, 1, 5, 8)

    $$\begin{aligned} Q({{\varvec{n}}})= & {} 297 n_1^2 + 880 n_1 n_2 + 652 n_2^2 ,c=\frac{371}{880}, N_1=220, N_2=80, \\ r_1= & {} 53, s_1=57, r_2=27, s_2=37. \end{aligned}$$
  • 37. M(2, 3, 2, 1, 8, 57)

    $$\begin{aligned} Q({{\varvec{n}}})= & {} 391 n_1^2 + 912 n_1 n_2 + 532 n_2^2 ,c=\frac{445}{912}, N_1=12, N_2=912, \\ r_1= & {} 1, s_1=5, r_2=391, s_2=407. \end{aligned}$$
  • 38. M(2, 3, 2, 1, 9, 32)

    $$\begin{aligned} Q({{\varvec{n}}})= & {} 247 n_1^2 + 576 n_1 n_2 + 336 n_2^2 ,c=\frac{281}{576}, N_1=12, N_2=576, \\ r_1= & {} 1, s_1=5, r_2=247, s_2=265. \end{aligned}$$
  • 39. M(2, 3, 2, 1, 12, 17)

    $$\begin{aligned} Q({{\varvec{n}}})= & {} 175 n_1^2 + 408 n_1 n_2 + 238 n_2^2 ,c=\frac{199}{408}, N_1=12, N_2=408, \\ r_1= & {} 1, s_1=5, r_2=175, s_2=199. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bringmann, K., Mahlburg, K. & Milas, A. Higher depth quantum modular forms and plumbed 3-manifolds. Lett Math Phys 110, 2675–2702 (2020). https://doi.org/10.1007/s11005-020-01310-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-020-01310-z

Keywords

Mathematics Subject Classification

Navigation