Skip to main content
Log in

Multispectral to Panchromatic Image Fusion Based on Morphological Extended-Half-Gradient

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

Pansharpening refers to the fusion of remotely sensed multispectral and panchromatic images which are characterized by different levels of spectral–spatial resolutions and acquired for the same location by optical remote sensing satellite sensors. In this paper, we propose a pansharpening algorithm based on morphological extended-half-gradient. Popular quality metrics employing two assessment methods, namely reduced resolution assessment and full resolution assessment, are used for performance measurement. For validating the efficiency of the proposed algorithm, we compare its performance with that of morphological half-gradient-based fusion procedure and a few other popular image fusion algorithms. We also propose the best possible bias factor in the formulation of the proposed algorithm by experimentation on varied values. Three real datasets acquired by WorldView-4, SPOT-6 and QuickBird-2 are used in the experimentation. The results affirm that the proposed algorithm offers improved image fusion than using the morphological half-gradient. This successful demonstration of the proposed algorithm proves the potential of morphological image processing operations to be useful in the achievement of efficient pansharpening. This work also underlines the need for more computational efficiency in image fusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • (2016). http://www.glcf.umd.edu/data.

  • (2019a). http://worldview4.digitalglobe.com.

  • (2019b). https://apollomapping.com/download-free-poster.

  • Aiazzi, B., Baronti, S., & Selva, M. (2007). Improving component substitution pansharpening through multivariate regression of MS+Pan data. IEEE Transactions on Geoscience and Remote Sensing, 45(10), 3230–3239.

    Article  Google Scholar 

  • Aiazzi, B., et al. (2017). Sensitivity of pansharpening methods to temporal and instrumental changes between multispectral and panchromatic data sets. IEEE Transactions on Geoscience and Remote Sensing, 55(1), 308–319.

    Article  Google Scholar 

  • Azarang, A., Manoochehri, H. E., & Kehtarnavaz, N. (2019). Convolutional autoencoder-based multispectral image fusion. IEEE Access, 7, 35673–35683.

    Article  Google Scholar 

  • Bai, X. (2015). Infrared and visual image fusion through feature extraction by morphological sequential toggle operator. Infrared Physics & Technology, 71, 77–86.

    Article  Google Scholar 

  • Blum, R. S., & Liu, Z. (Eds.). (2006). Multi-sensor image fusion and its applications. Boca Raton, FL: CRC Press, Taylor and Francis Group, LLC.

    Google Scholar 

  • Duran, J., & Buades, A. (2019). Restoration of pansharpened images by conditional filtering in the PCA domain. IEEE Geoscience and Remote Sensing Letters, 16(3), 442–446.

    Article  Google Scholar 

  • El-Mezouar, M. C., Taleb, N., Kpalma, K., & Ronsin, J. (2011). An IHS-based fusion for color distortion reduction and vegetation enhancement in IKONOS imagery. IEEE Geoscience and Remote Sensing Letters, 49(5), 1590–1602.

    Article  Google Scholar 

  • Farah, I. R., Boulila, W., Ettabaâ, K. S., Solaiman, B., & Ahmed, M. B. (2008). Interpretation of multisensor remote sensing images: Multiapproach fusion of uncertain information. IEEE Transactions on Geoscience and Remote Sensing, 46(12), 4142–4152.

    Article  Google Scholar 

  • González-Audí-cana, M., Saleta, J. L., Catalán, R. G., & García, R. (2004). Fusion of multispectral and panchromatic imagesusing improved IHS and PCA mergers based on waveletdecomposition. IEEE Transactions on Geoscience and Remote Sensing, 42(6), 1291–1299.

    Article  Google Scholar 

  • He, L., et al. (2019). Pansharpening via detail injection based convolutional neural networks. The IEEE Journal of Selected Topics in Applied Earth Observations, 12(4), 1188–1204.

    Article  Google Scholar 

  • Imani, M. (2018). Band dependent spatial details injection based on collaborative representation for pansharpening. The IEEE Journal of Selected Topics in Applied Earth Observations, 11(12), 4994–5004.

    Article  Google Scholar 

  • Jiang, Y., & Wang, M. (2014). Image fusion with morphological component analysis. Information Fusion, 18, 107–118.

    Article  Google Scholar 

  • Kallel, A. (2015). MTF-adjusted pansharpening approach based on coupled multiresolution decompositions. IEEE Transactions on Geoscience and Remote Sensing, 53(6), 3124–3145.

    Article  Google Scholar 

  • Khan, M. M., Chanussot, J., Condat, L., & Montanvert, A. (2008). Indusion: Fusion of multispectral and panchromatic images using the induction scaling technique. IEEE Geoscience and Remote Sensing Letters, 5(1), 98–102.

    Article  Google Scholar 

  • Lee, J., & Lee, C. (2010). Fast and efficient panchromatic sharpening. IEEE Transactions on Geoscience and Remote Sensing, 48(1), 155–163.

    Article  Google Scholar 

  • Liao, W., Pižurica, A., Bellens, R., Gautama, S., & Philips, W. (2015). Generalized graph-based fusion of hyperspectral and LiDAR data using morphological features. IEEE Geoscience and Remote Sensing Letters, 12(3), 552–556.

    Article  Google Scholar 

  • Lu, X., Zhang, J., Li, T., & Zhang, Y. (2016). Pan-sharpening by multilevel interband structure modeling. IEEE Geoscience and Remote Sensing Letters, 13(7), 892–896.

    Article  Google Scholar 

  • Mahmoudi, F. T., Samadzadegan, F., & Reinartz, P. (2015). Object recognition based on the context aware decision-level fusion in multiviews imagery. The IEEE Journal of Selected Topics in Applied Earth Observations, 8(1), 12–22.

    Article  Google Scholar 

  • Mitchell, H. B. (2012). Data fusion: Concepts and ideas. Berlin: Springer.

    Book  Google Scholar 

  • Nunez, J., et al. (1999). Multiresolution-based image fusion with additive wavelet decomposition. IEEE Transactions on Geoscience and Remote Sensing, 37(3), 1204–1211.

    Article  Google Scholar 

  • Pandit, V. R., & Bhiwani, R. J. (2015). Image fusion in remote sensing applications: A review. International Journal of Computer, 120(10), 22–32.

    Google Scholar 

  • Pandit, V. R., & Bhiwani, R. J. (2019a). Component substitution based fusion of WorldView imagery. In Proceedings of IEEE The 10th international conference on computer networks and inventive communication technologies (ICCCNT) (pp. 1236–1242), IIT, Kanpur, India.

  • Pandit, V. R., & Bhiwani, R. J. (2019b). Fusion of QuickBird imagery using multi-resolution analysis based algorithms. In Proceedings IEEE 4th international conference on communication and electronics systems (ICCES) (pp. 933–940), Coimbatore, India.

  • Restaino, R., Vivone, G., Mura, M. D., & Chanussot, J. (2015). A pansharpening algorithm based on morphological filters. In J. A. Benediktsson, J. Chanussot, L. Najman, & H. Talbot (Eds.), Mathematical morphology and its applications to signal and image processing (pp. 98–109). Berlin: Springer.

    Chapter  Google Scholar 

  • Restaino, R., Vivone, G., Mura, M. D., & Chanussot, J. (2016). Fusion of multispectral and panchromatic images based on morphological operators. IEEE Transactions on Image Processing, 25(6), 2882–2895.

    Article  Google Scholar 

  • Shah, V. P., Younan, N. H., & King, R. L. (2008). An efficient pan-sharpening method via a combined adaptive PCA approach and contourlets. IEEE Transactions on Geoscience and Remote Sensing, 46(5), 1323–1335.

    Article  Google Scholar 

  • Tian, J., Liu, G., & Liu, J. (2018). Multi-focus image fusion based on edges and focused region extraction. International Journal for Light and Electron Optics, 171, 611–624.

    Article  Google Scholar 

  • Ünsalan, C., & Boyer, K. L. (2011). Multispectral satellite image understanding. London: Springer.

    Book  Google Scholar 

  • Vivone, G., Restaino, R., & Chanussot, J. (2018). A bayesian procedure for full-resolution quality assessment of pansharpened products. IEEE Transactions on Geoscience and Remote Sensing, 56(8), 4820–4834.

    Article  Google Scholar 

  • Vivone, G., Addesso, P., Restaino, R., Mura, M. D., & Chanussot, J. (2019). Pansharpening based on deconvolution for multiband filter estimation. IEEE Transactions on Geoscience and Remote Sensing, 57(1), 540–553.

    Article  Google Scholar 

  • Vivone, G., et al. (2015a). A critical comparison among pansharpening algorithms. IEEE Transactions on Geoscience and Remote Sensing, 53(5), 2565–2586.

    Article  Google Scholar 

  • Vivone, G., et al. (2015b). Pansharpening based on semiblind deconvolution. IEEE Transactions on Geoscience and Remote Sensing, 53(4), 1997–2010.

    Article  Google Scholar 

  • Wald, L. (1999). Some terms of reference in data fusion. IEEE Transactions on Geoscience and Remote Sensing, 37(3), 1190–1193.

    Article  Google Scholar 

  • Wang, T., Fang, F., Li, F., & Zhang, G. (2019). High quality bayesian pansharpening. IEEE Transactions on Image Processing, 28(1), 227–239.

    Article  Google Scholar 

  • Wang, Z., Xu, J., Jiang, X., & Yan, X. (2020). Infrared and visible image fusion via hybrid decomposition of NSCT and morphological sequential toggle operator. International Journal for Light and Electron Optics, 201, 163497.

    Article  Google Scholar 

  • Xu, Q., Li, B., Zhang, Y., & Ding, L. (2014). High-fidelity component substitution pansharpening by the fitting of substitution data. IEEE Transactions on Geoscience and Remote Sensing, 52(11), 7380–7392.

    Article  Google Scholar 

  • Yang, Y., Wu, L., Huang, S., Tang, Y., & Wan, W. (2018). Pansharpening for multiband images with adaptive spectral-intensity modulation. The IEEE Journal of Selected Topics in Applied Earth Observations, 11(9), 3196–3208.

    Article  Google Scholar 

  • Zhang, K., Wang, M., Yang, S., & Jiao, L. (2019). Convolution structure sparse coding for fusion of panchromatic and multispectral images. IEEE Transactions on Geoscience and Remote Sensing, 57(02), 1117–1130.

    Article  Google Scholar 

  • Zhong, S., Zhang, Y., Chen, Y., & DiWu (2017). Combining component substitution and multiresolution analysis: A novel generalized BDSD pansharpening algorithm. The IEEE Journal of Selected Topics in Applied Earth Observations, 10(6), 2867–2875.

    Article  Google Scholar 

  • Zhou, B., Shao, F., Meng, X., Fu, R., & Ho, Y. S. (2019). No-reference quality assessment for pansharpened images via opinion-unaware learning. IEEE Access, 7, 40388–40401.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vaibhav R. Pandit.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandit, V.R., Bhiwani, R.J. Multispectral to Panchromatic Image Fusion Based on Morphological Extended-Half-Gradient. J Indian Soc Remote Sens 48, 945–957 (2020). https://doi.org/10.1007/s12524-020-01127-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-020-01127-2

Keywords

Navigation