Skip to main content
Log in

Glucose oxidation reaction at palladium-carbon nano-onions in alkaline media

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The glucose oxidation reaction, at Pd on unsupported carbon nano-onions (Pd/CNOs), has been studied by using physical and electrochemical characterization techniques. The rotating disk slurry electrode (RoDSE) technique was used for the Pd electrodeposition at the carbon support. The Pd/CNO catalyst was compared with the optimized RoDSE-prepared Pd/Vulcan XC-72R nanoflake catalyst for the glucose oxidation reaction by using different physical and electrochemical characterization techniques. Powder XRD analysis verified the effect of the carbon support material on the Pd crystallinity and size nanoparticles. Raman spectroscopy and X-ray photoelectron spectroscopy were used to understand the chemical structure of each carbon support before and after the Pd electrodeposition. The surface area and porosity of both Pd/C catalysts and their respective carbon substrates were investigated using N2 adsorption analysis. Transmission electron microscopy images established the morphology and the sizes of the Pd/CNOs, obtaining a large dispersion of nanoparticles with an average diameter size between 35 and 40 nm, with smaller particles in the range between 2 and 10 nm. Finally, cyclic voltammetry (CV) and linear sweep voltammetry (LSV) were used to compare the electrocatalytic activity of Pd/C, Vulcan XC-72R, and CNOs, for the glucose oxidation reaction in alkaline media. The results indicate that Pd/CNOs has the capacity to oxidize glucose in the normal glucose range between 5 and 8 mM, the normal range of glucose in human blood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. National Diabetes Data G (1979) Classification and diagnosis of diabetes mellitus and other categories of glucose intolerance. Diabetes 28(12):1039–1057

    Article  Google Scholar 

  2. Alberti KGMM, Zimmet PZ (1998) Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus. Provisional report of a WHO consultation. Diabet Med 15:539–553, 7

  3. Toghill Richard KC (2010) Electrochemical non-enzymatic glucose sensor: a perspective and an evaluation. 5:1246–1301

  4. Clark LC Jr, Lyons C (1962) Electrode systems for continuous monitoring in cardiovascular surgery. Ann N Y Acad Sci 102:29–45

    Article  CAS  PubMed  Google Scholar 

  5. Wang J (2008) Electrochemical glucose biosensors. Chem Rev 108(2):814–825

    Article  CAS  PubMed  Google Scholar 

  6. Park S, Boo H, Chung TD (2006) Electrochemical non-enzymatic glucose sensors. Anal Chim Acta 556(1):46–57

    Article  CAS  PubMed  Google Scholar 

  7. Updike SJ, Hicks GP (1967) The enzyme electrode. Nature 214(5092):986–988

    Article  CAS  PubMed  Google Scholar 

  8. Guilbault GG, Lubrano GJ (1973) An enzyme electrode for the amperometric determination of glucose. Anal Chim Acta 64(3):439–455

    Article  CAS  PubMed  Google Scholar 

  9. Reitz E, Jia W, Gentile M et al (2008) CuO nanospheres based nonenzymatic glucose sensor. Electroanal An Int J Devoted to Fundam Pract Asp Electroanal 20:2482–2486

    CAS  Google Scholar 

  10. Zhu Z, Garcia-Gancedo L, Flewitt AJ, Xie H, Moussy F, Milne WI (2012) A critical review of glucose biosensors based on carbon nanomaterials: carbon nanotubes and graphene. Sensors 12(5):5996–6022

    Article  PubMed  PubMed Central  Google Scholar 

  11. Naik KK, Gangan A, Chakraborty B, Nayak SK, Rout CS (2017) Enhanced nonenzymatic glucose-sensing properties of electrodeposited NiCo2O4–Pd nanosheets: experimental and DFT investigations. ACS Appl Mater Interfaces 9(28):23894–23903

    Article  CAS  PubMed  Google Scholar 

  12. Hwang D-W, Lee S, Seo M, Chung TD (2018) Recent advances in electrochemical non-enzymatic glucose sensors–a review. Anal Chim Acta 1033:1–34

    Article  CAS  PubMed  Google Scholar 

  13. Lee W-C, Kim K-B, Gurudatt NG, Hussain KK, Choi CS, Park DS, Shim YB (2019) Comparison of enzymatic and non-enzymatic glucose sensors based on hierarchical Au-Ni alloy with conductive polymer. Biosens Bioelectron 130:48–54

    Article  CAS  PubMed  Google Scholar 

  14. Qiu F, Wang D, Zhu Q, Zhu L, Tong G, Lu Y, Yan D, Zhu X (2014) Real-time monitoring of anticancer drug release with highly fluorescent star-conjugated copolymer as a drug carrier. Biomacromolecules 15(4):1355–1364

    Article  CAS  PubMed  Google Scholar 

  15. Wang Y, Chen J, Zhou C, Zhou L, Kong Y, Long H, Zhong S (2014) A novel self-cleaning, non-enzymatic glucose sensor working under a very low applied potential based on a Pt nanoparticle-decorated TiO2 nanotube array electrode. Electrochim Acta 115:269–276

    Article  CAS  Google Scholar 

  16. Niu X, Lan M, Zhao H, Chen C (2013) Well-dispersed Pt cubes on porous Cu foam: high-performance catalysts for the electrochemical oxidation of glucose in neutral media. Chem Eur J 19(29):9534–9541

    Article  CAS  PubMed  Google Scholar 

  17. Lee S, Lee J, Park S, Boo H, Kim HC, Chung TD (2018) Disposable non-enzymatic blood glucose sensing strip based on nanoporous platinum particles. Appl Mater Today 10:24–29

    Article  Google Scholar 

  18. Gougis M, Tabet-Aoul A, Ma D, Mohamedi M (2014) Laser synthesis and tailor-design of nanosized gold onto carbon nanotubes for non-enzymatic electrochemical glucose sensor. Sensors Actuators B Chem 193:363–369

    Article  CAS  Google Scholar 

  19. Huo H, Guo C, Li G, Han X, Xu C (2014) Reticular-vein-like Cu@Cu2O/reduced graphene oxide nanocomposites for a non-enzymatic glucose sensor. RSC Adv 4(39):20459–20465

    Article  CAS  Google Scholar 

  20. Luo B, Li X, Yang J, Li X, Xue L, Li X, Gu J, Wang M, Jiang L (2014) Non-enzymatic electrochemical sensors for the detection of hydrogen peroxide based on Cu2O/Cu nanocomposites. Anal Methods 6(4):1114–1120

    Article  CAS  Google Scholar 

  21. Huang J, Dong Z, Li Y, Li J, Tang W, Yang H, Wang J, Bao Y, Jin J, Li R (2013) MoS2 nanosheet functionalized with Cu nanoparticles and its application for glucose detection. Mater Res Bull 48(11):4544–4547

    Article  CAS  Google Scholar 

  22. Wang X, Ge C, Chen K, Zhang YX (2018) An ultrasensitive non-enzymatic glucose sensors based on controlled petal-like CuO nanostructure. Electrochim Acta 259:225–232

    Article  CAS  Google Scholar 

  23. Gao A, Zhang X, Peng X, Wu H, Bai L, Jin W, Wu G, Hang R, Chu PK (2016) In situ synthesis of Ni(OH)2/TiO2 composite film on NiTi alloy for non-enzymatic glucose sensing. Sensors Actuators B Chem 232:150–157

    Article  CAS  Google Scholar 

  24. Wang Z, Hu Y, Yang W, Zhou M, Hu X (2012) Facile one-step microwave-assisted route towards Ni nanospheres/reduced graphene oxide hybrids for non-enzymatic glucose sensing. Sensors 12(4):4860–4869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ye J-S, Chen C-W, Lee C-L (2015) Pd nanocube as non-enzymatic glucose sensor. Sensors Actuators B Chem 208:569–574

    Article  CAS  Google Scholar 

  26. Lu L-M, Li H-B, Qu F, Zhang XB, Shen GL, Yu RQ (2011) In situ synthesis of palladium nanoparticle–graphene nanohybrids and their application in nonenzymatic glucose biosensors. Biosens Bioelectron 26(8):3500–3504

    Article  CAS  PubMed  Google Scholar 

  27. Li Y, Niu X, Tang J, Lan M, Zhao H (2014) A comparative study of nonenzymatic electrochemical glucose sensors based on Pt-Pd nanotube and nanowire arrays. Electrochim Acta 130:1–8

    Article  CAS  Google Scholar 

  28. Chai D, Zhang X, Chan SH, Li G (2019) Facile aqueous phase synthesis of Pd3Cu–B/C catalyst for enhanced glucose electrooxidation. J Taiwan Inst Chem Eng 95:139–146

    Article  CAS  Google Scholar 

  29. Moore AD, Holmes SM, Roberts EPL (2012) Evaluation of porous carbon substrates as catalyst supports for the cathode of direct methanol fuel cells. RSC Adv 2(4):1669–1674

    Article  CAS  Google Scholar 

  30. Habibi B, Mohammadyari S (2015) Facile synthesis of Pd nanoparticles on nano carbon supports and their application as an electrocatalyst for oxidation of ethanol in alkaline media: the effect of support. Int J Hydrog Energy 40(34):10833–10846

    Article  CAS  Google Scholar 

  31. Rodriguez-Reinoso F (1998) The role of carbon materials in heterogeneous catalysis. Carbon 36(3):159–175

    Article  CAS  Google Scholar 

  32. Antolini E (2009) Carbon supports for low-temperature fuel cell catalysts. Appl Catal B Environ 88(1-2):1–24

    Article  CAS  Google Scholar 

  33. Plonska-Brzezinska ME, Echegoyen L (2013) Carbon nano-onions for supercapacitor electrodes: recent developments and applications. J Mater Chem A 1(44):13703–13714

    Article  CAS  Google Scholar 

  34. Palkar A, Melin F, Cardona CM et al (2007) Reactivity differences between carbon nano onions (CNOs) prepared by different methods. Chem Asian J 2(5):625–633

    Article  CAS  PubMed  Google Scholar 

  35. Santiago D, Rodríguez-Calero GG, Palkar A, Barraza-Jimenez D, Galvan DH, Casillas G, Mayoral A, Jose-Yacamán M, Echegoyen L, Cabrera CR (2012) Platinum electrodeposition on unsupported carbon nano-onions. Langmuir 28(49):17202–17210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cunci L, Velez CA, Perez I, Suleiman A, Larios E, José-Yacamán M, Watkins JJ, Cabrera CR (2014) Platinum electrodeposition at unsupported electrochemically reduced nanographene oxide for enhanced ammonia oxidation. ACS Appl Mater Interfaces 6(3):2137–2145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Plonska-Brzezinska ME, Dubis AT, Lapinski A, Villalta-Cerdas A, Echegoyen L (2011) Electrochemical properties of oxidized carbon nano-onions: DRIFTS-FTIR and Raman spectroscopic analyses. ChemPhysChem 12(14):2659–2668

    Article  CAS  PubMed  Google Scholar 

  38. Kruk M, Jaroniec M (2001) Gas adsorption characterization of ordered organic− inorganic nanocomposite materials. Chem Mater 13(10):3169–3183

    Article  CAS  Google Scholar 

  39. Kruk M, Jaroniec M, Bereznitski Y (1996) Adsorption study of porous structure development in carbon blacks. J. Colloid Interface Sci 182(1):282–288

    Article  CAS  Google Scholar 

  40. Kruk M, Li Z, Jaroniec M, Betz WR (1999) Nitrogen adsorption study of surface properties of graphitized carbon blacks. Langmuir 15(4):1435–1441

    Article  CAS  Google Scholar 

  41. Velez C, Corchado-Garcia J, Rojas-Pérez A et al (2017) Manufacture of Pd/carbon Vulcan XC-72R nanoflakes catalysts for ethanol oxidation reaction in alkaline media by RoDSE method. J Electrochem Soc 164(14):D1015–D1021

    Article  CAS  Google Scholar 

  42. Wang F, Yang L, Tang Q, Guo Y, Hao G (2013) Synthesis of Pd/XC-72 catalysts by a facile glutamate-mediated method for solvent-free selective oxidation of DL-sec-phenethylalcohol. Catal Sci Technol 3(5):1246–1252

    Article  CAS  Google Scholar 

  43. Hiura H, Ebbesen TW, Tanigaki K, Takahashi H (1993) Raman studies of carbon nanotubes. Chem Phys Lett 202(6):509–512

    Article  CAS  Google Scholar 

  44. Jawhari T, Roid A, Casado J (1995) Raman spectroscopic characterization of some commercially available carbon black materials. Carbon 33(11):1561–1565

    Article  CAS  Google Scholar 

  45. Blyth RIR, Buqa H, Netzer FP, Ramsey MG, Besenhard JO, Golob P, Winter M (2000) XPS studies of graphite electrode materials for lithium ion batteries. Appl Surf Sci 167(1-2):99–106

    Article  CAS  Google Scholar 

  46. Khodabakhshi S, Fulvio PF, Andreoli E (2020) Carbon black reborn: structure and chemistry for renewable energy harnessing. Carbon 162:604–649

    Article  CAS  Google Scholar 

  47. Chmiola J, Yushin G, Gogotsi Y, Portet C, Simon P, Taberna PL (2006) Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science 313(5794):1760–1763

    Article  CAS  PubMed  Google Scholar 

  48. Heller A (1999) Implanted electrochemical glucose sensors for the management of diabetes. Annu Rev Biomed Eng 1(1):153–175

    Article  CAS  PubMed  Google Scholar 

  49. U.S. Department of Health and Human Services Food and Drug Administration Center for Devices and Radiological Health (2016) Self-monitoring blood glucose test systems for over-the-counter use

Download references

Funding

This work was supported by the National Science Foundation NSF-PREM: Center for Interfacial Electrochemistry of Energy Materials (CiE2M) grant number DMR-1827622. The use of the Cornell Center for Materials Research Shared Facilities, which is supported through the NSF MRSEC grant number DMR-1719875, is greatly appreciated. LE wishes to thank the National Science Foundation, NSF-CHE 1801317, for generous support for this work and the Robert A Welch Foundation for the endowed chair, grant number AH-0033.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos R. Cabrera.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vélez, C.A., Soto-Pérez, J.J., Corchado-García, J. et al. Glucose oxidation reaction at palladium-carbon nano-onions in alkaline media. J Solid State Electrochem 25, 207–217 (2021). https://doi.org/10.1007/s10008-020-04729-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-020-04729-5

Keywords

Navigation