Skip to main content
Log in

Theoretical determination of half-wave potentials for phenanthroline-, bipyridine-, acetylacetonate-, and glycinate-containing copper (II) complexes

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

We report a protocol for the evaluation of theoretical half-wave potential (E1/2) using a set of 22 mixed chelate copper (II) complexes containing 1,10-phenanthroline and 2,2′-bipyridine derivatives as primary ligands, and acetylacetonate or glycinate as secondary ligands (formally from the Casiopeínas® family) for which accurate experimental values were determined in a 2/5 mixture of ethanol/water. We have calibrated the BP86, PBE, PBE0, B3LYP, M06-2X, and ω-B97XD functionals, using the Los Alamos LANL2DZ and Stuttgart-Köln SDDAll effective core potentials for the Cu and Fe atoms and the 6-311+G* basis set for the C, H, O, and N atoms. To address the solvent effects, we have saturated the first solvation shell with up to 9 water molecules for the explicit model and compared it with the Continuum Like-Polarizable Continuum Model (CPCM) implicit solvent scheme. We found that the PBE/LANL2DZ-6-311+G* protocol (with the CPCM implicit solvent scheme with an effective dielectric constant ε = 64.9121 for the 2/5 mixture of ethanol/water) yields the overall best performance. The theoretical values are compared with experimental data, three of which are reported here for the first time. We find good correlations between the theoretical and experimental E1/2 values for the 2,2′-bipyridine derivatives (R2 = 0.987, MAE = 86 mV) and 1,10-phenanthroline derivatives (R2 = 0.802, MAE = 58.4 mV). The correlation trends have been explained in terms of the copper atom’s ability to be reduced in the presence of the ligands. The Gibbs free energy differences at 298 K obtained for the redox reactions show that the more flexible secondary ligands (acetylacetonate) lead to larger entropic contributions which, as expected, increase the average MAE values as compared with the more rigid ligands (glycine). The present protocol yields lower MAEs as compared with previous approaches for similar mixed and flexible Cu(II) complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ruiz-Azuara L (1990) Procedimiento para la obtención de complejos metálicos como agentes anticancerígenos. Tipo I. Patente de invención en trámite, SECOFI 18801. P. I. Patente, 26/01/1994 no. 172967

  2. Ruiz-Azuara L (1990) Procedimiento para la obtención de complejos metálicos como agentes anticancerígenos. Tipo II. Patente de invención en trámite, SECOFI 18802. P. I. Patente, 09/12/1993 no. 172248

  3. Goyer RA (1997) Toxic and essential metal interactions. Ann Rev Nut 17:37–50. https://doi.org/10.1146/annurev.nutr.17.1.37 Medline

    Article  CAS  Google Scholar 

  4. Haas KL, Franz K (2009) Application of metal coordination chemistry to explore and manipulate call biology. Chem Rev 109:4921–4960. https://doi.org/10.1021/cr900134a Medline

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ndari U, Mhlongo N, Soliman ME (2017) Metal complexes in cancer therapy-an update from drug design perspective. Drug Des Devel Ther 11:599–616. https://doi.org/10.2147/DDDT.S119488

    Article  Google Scholar 

  6. Mjos KD, Orvig C (2014) Metallodrugs in medicinal inorganic chemistry. Chem Rev 114:4540–4563. https://doi.org/10.1021/cr400460s Medline

    Article  CAS  PubMed  Google Scholar 

  7. Bravo-Gómez ME, Hernández-de la Paz AL, Gracia-Mora I (2013) Antineoplastic evaluation of two mixed chelate copper complexes (Casiopeínas®) in HCT-15 xenograft model. J Mex Chem Soc 57:205–211 (ISSN 1870-249X)

    Google Scholar 

  8. Ruiz-Azuara L (1997) Process to obtain new mixed copper aminoacidate complexes from phenylatephenanthroline to be used as anticancerigenic agents. U.S. Patent application serial No. 07/628,843., 21/04/1992 Number 5, 107, 005. Re35, 458, Feb. 18

  9. Ruiz-Azuara L (1992) Process to obtain new mixed copper aminoacidate from methylate phenanthroline complexes to be used as anticancerigenic agents. U. S. Patent application serial No. 07/628,628., Pat. No. 5,576,326. 19/11/1996

  10. De-Vizcaya-Ruiz A, Rivero-Mueller A, Ruiz-Ramirez L, Lass GE, Kelland LR, Orr RM, Dobrota M (2000) Induction of apoptosis by a novel copper-based anticancer compound, casiopeina II, in L1210 murine leukaemic and CHI human ovarian carcinoma cells. Toxicol in Vitro 14:1–5. https://doi.org/10.1016/S0887-2333(99)00082-X Medline

    Article  CAS  PubMed  Google Scholar 

  11. Gracia-Mora I, Ruiz-Ramirez L, Gómez-Ruiz C, Tinoco-Méndez M, Márquez-Quiñones A, Romero-De Lira L, Marín-Hernández A, Macías-Rosales L, Bravo-Gómez ME (2001) Knight’s move in the periodic table, from copper to platinum, novel antitumor mixed chelate copper compounds, casiopeinas, evaluated by an in vitro human and murine cancer cell line panel. Met Based Drugs 8:19–28. https://doi.org/10.1155/MBD.2001.19 Medline

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gutiérrez AG, Vázquez-Aguirre A, García-Ramos JC, Flores-Alamo M, Hernández-Lemus E, Ruiz-Azuara L, Mejía C (2013) Copper (II) mixed chelate compounds induce apoptosis through reactive oxygen species in neuroblastoma cell line CHP-212. J Inorg Biochem 126:17–25. https://doi.org/10.1016/j.jinorgbio.2013.05.001 Medline

    Article  CAS  PubMed  Google Scholar 

  13. Alemón-Medina R, Brena-Valle M, Muñoz-Sánchez JL, Gracia-Mora MI (2007) Induction of oxidative damage by copper-based antineoplastic drugs (Casiopeínas®). Cancer Chemother Pharmacol 60:219–228. https://doi.org/10.1007/s00280-006-0364-9 Medline

    Article  CAS  PubMed  Google Scholar 

  14. Rivero-Muller A, De Vizcaya-Ruiz A, Plant N, Ruiz L, Dobrota M (2007) Mixed chelate copper complex, Casiopeína IIgly®, binds and degrades nucleic acids: a mechanism of cytotoxicity. Chem Biol Interact 1:189–199. https://doi.org/10.1016/j.cbi.2006.12.002

    Article  CAS  Google Scholar 

  15. Alemón-Medina R, Muñoz-Sánchez JL, Ruiz-Azuara L, Gracia-Mora MI (2008) Casiopeían IIgly induced cytotoxicity to HeLa cells depletes the levels of reduced glutathione and is prevented by dimethyl sulfoxide. Toxicol in Vitro 22:710–715. https://doi.org/10.1016/j.tiv.2007.11.011 Medline

    Article  CAS  PubMed  Google Scholar 

  16. Serment-Guerrero J, Cano-Sánchez P, Reyes-Perez L (2011) Genotoxicity of the copper antineoplastic coordination complexes casiopeinas®. Toxicol In Vitro 25:1376–1384. https://doi.org/10.1016/j.tiv.2011.05.008 Medline

    Article  CAS  PubMed  Google Scholar 

  17. Alemon-Medina R, Bravo-Gómez ME, Gracia-Mora MI, Ruiz-Azuara L (2011) Comparison between the antiproliferative effect and intracellular glutathione depletion induced by Casiopeína IIgly and cisplatin in murine melanoma B16 cells. Toxicol in Vitro 25:868–873. https://doi.org/10.1016/j.tiv.2011.02.007 Medline

    Article  CAS  PubMed  Google Scholar 

  18. Kachadourian R, Brechbuhl HM, Ruiz-Azuara L, Gracia-Mora I, Day BJ (2010) Casiopeína IIgly-induced oxidative stress and mitochondrial dysfunction in human lung cancer A549 and H157 cells. Toxicology 268:176–183. https://doi.org/10.1016/j.tox.2009.12.010 Medline

    Article  CAS  PubMed  Google Scholar 

  19. Hernández-Esquivel L, Marín-Hernández A, Pavón N, Carvajal K, Moreno-Sánchez R (2006) Cardiotoxicity of copper-based antineoplastic drugs casiopeinas is related to inhibition of energy metabolism. Toxicol Appl Pharmacol 212:79–88. https://doi.org/10.1016/j.taap.2005.06.023 Medline

    Article  CAS  PubMed  Google Scholar 

  20. Marín-Hernández A, Gracia-Mora I, Ruiz-Ramírez L, Moreno-Sánchez R (2003) Toxic effects of copper-based antineoplastic drugs (Casiopeinas®) on mitochondrial functions. Biochem Pharmacol 65:1979–1989. https://doi.org/10.1016/S0006-2952(03)00212-0 Medline

    Article  CAS  PubMed  Google Scholar 

  21. Chikira M, Tomizawa Y, Fukita D, Suguizaki T, Sugawara N, Yamazaki T, Sasano A, Shindo H, Palaniandavar M, Antholine WE (2002) DNA-fiber EPR study of the orientation of Cu(II) complexes of 1,10-phenanthroline and its derivatives bound to DNA: mono(phenanthroline)-copper(II) and its ternary complexes with amino acids. J Inorg Biochem 89:163–173. https://doi.org/10.1016/S0162-0134(02)00378-1 Medline

    Article  CAS  PubMed  Google Scholar 

  22. Ruili Huang AW, Covell DG (2005) Anticancer metal compounds in NCI’s tumor-screening database: putative mode of action. Biochem Pharmacol 69:1009–1039. https://doi.org/10.1016/j.bcp.2005.01.001 Medline

    Article  CAS  PubMed  Google Scholar 

  23. Sigman DS, Mazumber A, Perrin SM (1993) Chemical nucleases. Chem Rev 93:2295–2316. https://doi.org/10.1021/cr00022a011

    Article  CAS  Google Scholar 

  24. Galindo-Murillo R, Hernández-Lima J, González-Rendón M, Cortés-Guzmán F, Ruiz-Azuara L, Moreno-Esparza R (2011) π-Stacking between Casiopeínas® and DNA bases. Phys Chem Chem Phys 13:14510–14515. https://doi.org/10.1039/c1cp20183b Medline

    Article  CAS  PubMed  Google Scholar 

  25. Galindo-Murillo R, Ruiz-Azuara L, Moreno-Esparza R, Cortés-Guzmán F (2012) Molecular recognition between DNA and a copper-based anticancer complex. Phys Chem Chem Phys 14:15539–15546. https://doi.org/10.1039/c2cp42185b Medline

    Article  CAS  PubMed  Google Scholar 

  26. Galindo-Murillo R, García-Ramos JC, Ruiz-Azuara L, Cheatham III TE, Cortés-Guzmán F (2015) Intercalation processes of copper complexes in DNA. Nucleic Acids Res 43:5364–5376. https://doi.org/10.1093/nar/gkv467 Medline

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bravo-Gómez ME, García-Ramos JC, García-Mora I, Ruiz-Azuara L (2009) Antiproliferative activity and QSAR study of copper (II) mixed chelate [Cu(N-N)(acetylacetonato)]NO3 and [Cu(N-N)(glycinato)]NO3 complexes. J Inorg Biochem 103:299–309. https://doi.org/10.1016/j.jinorgbio.2008.10.006 Medline

    Article  CAS  PubMed  Google Scholar 

  28. Bravo-Gómez ME, Dávila-Manzanilla S, Flood-Garibay JA, Muciño-Hernández MÁ, Mendoza Á, García-Ramos JC, Moreno-Esparza R, Ruiz-Azuara L (2012) Secondary ligand effects on the cytotoxity of several Casiopeina’s group II compounds. J Mex Chem Soc 56:85–92 (ISSN 1870-249X)

    Google Scholar 

  29. Avelar M, Martínez A (2012) Do Casiopeínas® prevent cancer disease by acting as antiradicals? A chemical reactivity study applying density functional theory. J Mex Chem Soc 56:250–256 (ISSN 1870-249X)

    CAS  Google Scholar 

  30. Ho J, Coote ML, Cramer CJ, Truhlar DG (2016) In: Speiser B (ed) Theoretical calculation of reduction potentials, in Organic Electrochemistry: Revised and Expanded Ole Hammerich. CRC Press, p 229

  31. Tazhigulov RN, Bravaya KB (2016) Free energies of redox half-reactions from first-principles calculations. J Phys Chem Lett 7:2490–2495. https://doi.org/10.1021/acs.jpclett.6b00893 Medline

    Article  CAS  PubMed  Google Scholar 

  32. Rulísěk L (2013) On the accuracy of calculated reduction potentials of selected group 8 (Fe, Ru, and Os) octahedral complexes. J Phys Chem C 117:16871–16877. https://doi.org/10.1021/jp406772u

    Article  CAS  Google Scholar 

  33. Flores-Leonar MM, Moreno-Esparza R, Ugalde-Saldívar VM, Amador-Bedolla C (2017) Further insights in DFT calculations of redox potential for iron complexes: the ferrocenium/ferrocene system. Comp Theor Chem 1099:167–173. https://doi.org/10.1016/j.comptc.2016.11.023

    Article  CAS  Google Scholar 

  34. Bokingo-Burnea FK, Shi H, Ko KC, Lee JY (2017) Reduction potential tuning of first row transition metal MIII/MII (M = Cr, Mn, Fe, Co, Ni) hexadentate complexes for viable aqueous redox flow battery catholytes: A DFT study. Electroquim Acta 246:156–164. https://doi.org/10.1016/j.electacta.2017.05.199

    Article  CAS  Google Scholar 

  35. Sánchez-Delgado GY, Paschoal D, Dos Santos HF (2017) Predicting standard reduction potential for anticancer Au(III)-complexes: ADFT study. Comp Theor Chem 1108:86–92. https://doi.org/10.1016/j.comptc.2017.03.027

    Article  CAS  Google Scholar 

  36. Robertazzi A, Magistrato A, de Hoog P, Carloni P, Reedijk J (2007) Density functional theory studies on copper phenanthroline complexes. Inorg Chem 46:5873–5881. https://doi.org/10.1021/ic0618908) Medline

    Article  CAS  PubMed  Google Scholar 

  37. Yan L, Lu Y, Li X (2016) A density functional theory protocol for the calculation of redox potentials of copper complexes. Phys Chem Chem Phys 18:5529–5536. https://doi.org/10.1039/C5CP06638G Medline

    Article  CAS  PubMed  Google Scholar 

  38. Chaparro D, Alí-Torres J (2017) Assessment of the isodesmic method in the calculation of standard reduction potential of copper complexes. J Mol Model 23:283. https://doi.org/10.1007/s00894-017-3469-7 Medline

    Article  CAS  PubMed  Google Scholar 

  39. Miao T, Deng Q, Gao H, Fu X, Li S (2018) Theoretical studies on DNA-cleavage mechanism of copper (II) complexes: probing generation of reactive oxygen species. J Chem Inf Model 58:859–866. https://doi.org/10.1021/acs.jcim.8b00055 Medline

    Article  CAS  PubMed  Google Scholar 

  40. Konezny SJ, Doherty MD, Luca OR, Crabtree RH, Soloveichik GI, Batista VS (2012) Reduction of systematic uncertainty in DFT redox potentials of transition-metal complexes. J Phys Chem C 116:6349–6356. https://doi.org/10.1021/jp300485t

    Article  CAS  Google Scholar 

  41. Arumugam K, Becker U (2014) Computational redox potential predictions: applications to inorganic and organic aqueous complexes, and complexes adsorbed to mineral surfaces. Minerals. 4:345–387. https://doi.org/10.3390/min4020345

    Article  CAS  Google Scholar 

  42. Roy L-E, Jakubikoba E, Guthrie G, Batista E-R (2009) Calculation of one-electron redox potentials revisited. Is it possible to calculate accurate potentials with density funtional theory? J Phys Chem A 113:6745–6750. https://doi.org/10.1021/jp811388w Medline

    Article  CAS  PubMed  Google Scholar 

  43. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich A, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian 09, Revision A.02. Gaussian, Inc, Wallingford

    Google Scholar 

  44. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865 Medline

    Article  CAS  PubMed  Google Scholar 

  45. Perdew JP, Burke K, Ernzerhof M (1997) Errata: Generalized gradient approximation made simple. Phys Rev Lett 78:1396. https://doi.org/10.1103/PhysRevLett.78.1396

    Article  CAS  Google Scholar 

  46. Perdew JP (1986) Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys Rev B 33:8822–8824. https://doi.org/10.1103/PhysRevB.33.8822 Medline

    Article  CAS  Google Scholar 

  47. Perdew JP, Wang Y (1986) Accurate and simple density functional for the electronic exchange energy: generalized gradient approximation. Phys Rev B 33:8800–8802. https://doi.org/10.1103/PhysRevB.33.8800 Medline

    Article  CAS  Google Scholar 

  48. Adamo C, Barone V (1999) Toward reliable density functional methods without adjustable parameters: the PBE0 model. J Chem Phys 110:6158–6169. https://doi.org/10.1063/1.478522

    Article  CAS  Google Scholar 

  49. Ernzerhof M, Scuseria GE (1999) Assessment of the Perdew-Burke-Ernzerhof exchange-correlation functional. J Chem Phys 110:5029–5036. https://doi.org/10.1063/1.478401

    Article  CAS  Google Scholar 

  50. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100. https://doi.org/10.1103/PhysRevA.38.3098

    Article  CAS  Google Scholar 

  51. Becke AD (1996) Density-functional thermochemistry. IV. A new dynamical correlation functional and implications for exact-exchange mixing. J Chem Phys 104:1040–1046. https://doi.org/10.1063/1.470829

    Article  CAS  Google Scholar 

  52. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789. https://doi.org/10.1103/PhysRevB.37.785 Medline

    Article  CAS  Google Scholar 

  53. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Accounts 120:215–241. https://doi.org/10.1007/s00214-007-0310-x

    Article  CAS  Google Scholar 

  54. Chai JD, Head-Gordon M (2008) Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys Chem Chem Phys 10:6615–6620. https://doi.org/10.1039/b810189b Medline

    Article  CAS  PubMed  Google Scholar 

  55. Chiodo S, Russo N, Sicilia E (2006) LANL2DZ basis sets recontracted in the framework of density functional theory. J Chem Phys 125:104107(1–8. https://doi.org/10.1063/1.2345197

    Article  CAS  PubMed  Google Scholar 

  56. Bergner A, Dolg M, Kuechle W, Stoll H, Preuss H (1993) Ab initio energy-adjusted pseudopotentials for elements of groups 13–17. Mol Phys 80:1431–1441. https://doi.org/10.1080/00268979300103121

    Article  CAS  Google Scholar 

  57. Barone V, Cossi M (1998) Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. J Phys Chem A 102:1995–2001. https://doi.org/10.1021/jp9716997

    Article  CAS  Google Scholar 

  58. Cossi M, Rega N, Scalmani G, Barone V (2003) Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J Comp Chem 24:669–681. https://doi.org/10.1002/jcc.10189 Medline

    Article  CAS  Google Scholar 

  59. Petong P, Pottel R, Kaatze U (2000) Water-ethanol mixtures at different compositions and temperatures. A dielectric relaxation study. J Phys Chem A 104:7420–7428. https://doi.org/10.1021/jp001393r

    Article  CAS  Google Scholar 

  60. Qu X, Persson KP (2016) Toward accurate modeling of the effect of ion-pair formation on solute redox potential. J Chem Theory Comput 12:4501–4508. https://doi.org/10.1021/acs.jctc.6b00289 Medline

    Article  CAS  PubMed  Google Scholar 

  61. Solomon EI, Happner DE, Johnston EM, Ginsbach JW, Cirera J, Qayyum M, Kieber-Emmons MT, Kjaergaard CH, Hadt RG, Tian L (2014) Copper active sites in biology. Chem Rev 114:3659–3853. https://doi.org/10.1021/cr400327t

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. García-Ramos JC, Galindo-Murillo R, Tovar-Tovar A, Alonso-Saenz AL, Gómez-Vidales V, Flores-Álamo M, Ortiz-Frade L, Cortes-Guzmán F, Moreno-Esparza R, Campero A, Ruiz-Azuara L (2014) The π-back-bonding modulation and its impact in the electronic properties of CuII antineoplastic compounds: an experimental and theoretical study. Chem Eur J 20:13730–13741. https://doi.org/10.1002/chem.201402775 Medline

    Article  CAS  PubMed  Google Scholar 

  63. Maqsood SR, Islam N, Bashir S, Khan B, Pandith AHJ (2013). Coord Chem 66:2308–2315. https://doi.org/10.1080/00958972.2013.800866

    Article  CAS  Google Scholar 

  64. James BR, Williams RJP (1961) The oxidation-reduction potentials of some copper complexes. J Chem Soc 0:2007–2019. https://doi.org/10.1039/JR9610002007

    Article  CAS  Google Scholar 

  65. Valdez-Camacho JR, Pérez-Salgado Y, Espinoza-Guillén A, Gómez-Vidales V, Tavira-Montalvan CA, Meneses-Acosta A, Leyva MA, Vázquez-Ríos MG, Juaristi E, Höpfl H, Ruiz-Azuara L, Escalante J (2020). Inorg Chim Acta 506:119542. https://doi.org/10.1016/j.ica.2020.119542

    Article  CAS  Google Scholar 

Download references

Funding

JRVC received a doctoral Fellowship from CONACYT (293909). ARS and JE also received support from CONACYT Basic Science Projects Nos. 253973 and 256653, respectively. The theoretical calculations were done at the CInC-UAEM Supercomputing facility funded by CONACYT Basic Science Projects. MH thanks Dr. Beni Busch-Gil for fruitful discussions.  

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minhhuy Hô.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 51723 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valdéz-Camacho, J.R., Ramírez-Solís, A., Escalante, J. et al. Theoretical determination of half-wave potentials for phenanthroline-, bipyridine-, acetylacetonate-, and glycinate-containing copper (II) complexes. J Mol Model 26, 191 (2020). https://doi.org/10.1007/s00894-020-04453-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-04453-x

Keywords

Navigation