Skip to main content
Log in

Porous VGCF@polyaniline nanohybrids with manipulated porous structures for effective microwave absorption

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Micro-nano structure regulation of polyaniline and impedance-matching design of its composites are two crucial but challenging works in microwave absorption. In this study, an in situ sacrificial templates polymerization is applied to regulate the porous structures of polyaniline decorated on vapor-grown carbon fiber (VGCF). By manipulating porous polyaniline structures, heterogeneous interfaces, polarization centers, and geometric structures are introduced into porous VGCF@polyaniline nanohybrids. Porous VGCF@polyaniline demonstrated robust microwave absorption ability with a minimum reflection loss of − 55.9 dB at 10.3 GHz with a filler loading of 18 wt% and a thinner thickness of 1.33 mm. The investigation of the novel porous polyaniline structures and composition relationship suggest that the microwave absorption ability of porous VGCF@polyaniline is originated from the optimal impedance-matching ratio, enhanced dielectric loss, and synergistic effect, which is enhanced by conductive loss and interfacial polarization. A universal approach was proposed to address the critical issue of hybridizing porous VGCF@polyaniline with flexible polyurethane sponge as practical electromagnetic absorption structures. The hybrids exhibited interesting dual absorption properties with minimum reflection loss of − 28.8 and − 35.5 dB at frequencies of 8.5 and 8.7 GHz, respectively. This study provides a new approach for designing lightweight and practical microwave absorbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. T. Li, D. Zhi, Y. Chen, Z. Zhou, F. Meng, Nano Res. 13, 477 (2020)

    CAS  Google Scholar 

  2. H. Wang, F. Meng, J. Li, T. Li, Z. Chen, H. Luo, Z. Zhou, A.C.S. Sustain, Chem. Eng. 6, 11801 (2018)

    CAS  Google Scholar 

  3. F. Meng, H. Wang, W. Wei, Z. Chen, T. Li, C. Li, Y. Xuan, Z. Zhou, Nano Res. 11, 2847 (2018)

    CAS  Google Scholar 

  4. S. Biswas, G.P. Kar, S. Bose, Nanoscale 7(26), 11334 (2015)

    CAS  Google Scholar 

  5. X. Tian, F. Meng, F. Meng, X. Chen, Y. Guo, Y. Wang, W. Zhu, Z. Zhou, A.C.S. Appl, Mater. Interfaces 9(18), 15711 (2017)

    CAS  Google Scholar 

  6. H. Pan, X. Yin, J. Xue, L. Cheng, L. Zhang, Carbon 107, 36 (2016)

    CAS  Google Scholar 

  7. L. Yu, Y. Zhu, Y. Fu, Appl. Surf. Sci. 427, 451 (2018)

    CAS  Google Scholar 

  8. H. Sun, R. Che, X. You, Y. Jiang, Z. Yang, J. Deng, L. Qiu, H. Peng, Adv. Mater. 26(48), 8120 (2014)

    CAS  Google Scholar 

  9. Y. Zhang, Y. Huang, T. Zhang, H. Chang, P. Xiao, H. Chen, Z. Huang, Y. Chen, Adv. Mater. 27(12), 2049 (2015)

    CAS  Google Scholar 

  10. M.M. Lu, M.S. Cao, Y.H. Chen, W.Q. Cao, J. Liu, H.L. Shi, D.Q. Zhang, W.Z. Wang, J. Yuan, A.C.S. Appl, Mater. Interfaces 7(34), 19408 (2015)

    CAS  Google Scholar 

  11. W. Liu, S. Tan, Z. Yang, G. Ji, Carbon 138, 143 (2018)

    CAS  Google Scholar 

  12. P. Liu, V.M.H. Ng, Z. Yao, J. Zhou, Y. Lei, Z. Yang, H. Lv, L.B. Kong, ACS Appl Mater. Interfaces 9(19), 16404 (2017)

    CAS  Google Scholar 

  13. H. Lv, Z. Yang, P.L. Wang, G. Ji, J. Song, L. Zheng, H. Zeng, Z.J. Xu, Adv. Mater. 30(15), 1706343 (2018)

    Google Scholar 

  14. X. Li, L. Yu, L. Yu, Y. Dong, Q. Gao, Q. Yang, W. Yang, Y. Zhu, Y. Fu, Chem. Eng. J. 352, 745 (2018)

    CAS  Google Scholar 

  15. T. Wu, Y. Liu, X. Zeng, T. Cui, Y. Zhao, Y. Li, G. Tong, ACS Appl Mater. Interfaces 8(11), 7370 (2016)

    CAS  Google Scholar 

  16. X. Liu, C. Hao, L. He, C. Yang, Y. Chen, C. Jiang, R. Yu, Nano Res. 11(8), 4169 (2018)

    CAS  Google Scholar 

  17. M. Khairy, Synthetic Met. 189, 34 (2014)

    CAS  Google Scholar 

  18. X. Li, L. Yu, W. Zhao, Y. Shi, L. Yu, Y. Dong, Y. Zhu, Y. Fu, X. Liu, F. Fu, Chem. Eng. J. 379, 122393 (2020)

    CAS  Google Scholar 

  19. Y. Wang, X. Gao, X.M. Wu, W.Z. Zhang, C.Y. Luo, P.B. Liu, Chem. Eng. J. 375, 121942 (2019)

    CAS  Google Scholar 

  20. P. Du, L. Lin, H. Wang, D. Liu, W. Wei, J. Li, P. Liu, Mater. Design 127, 76 (2017)

    CAS  Google Scholar 

  21. W. Zhao, Y. Li, S. Wu, D. Wang, X. Zhao, F. Xu, M. Zou, H. Zhang, X. He, A. Cao, ACS Appl. Mater. Interfaces 8(49), 34027 (2016)

    CAS  Google Scholar 

  22. Y. Chen, Y. Zhang, D. Geng, R. Li, H. Hong, J. Chen, X. Sun, Carbon 49, 4434 (2011)

    CAS  Google Scholar 

  23. D.K. Padhi, A. Baral, K. Parida, S.K. Singh, M.K. Ghosh, J. Phys. Chem. C 121(11), 6039 (2017)

    CAS  Google Scholar 

  24. K. Ghosh, C.Y. Yue, M.M. Sk, R.K. Jena, ACS Appl. Mater. Interfaces 9(18), 15350 (2017)

    CAS  Google Scholar 

  25. J. Liu, M.S. Cao, Q. Luo, H.L. Shi, W.Z. Wang, J. Yuan, ACS Appl. Mater. Interfaces 8(34), 22615 (2016)

    CAS  Google Scholar 

  26. X. Jian, B. Wu, Y. Wei, S.X. Dou, X. Wang, W. He, N. Mahmood, ACS Appl. Mater. Interfaces 8(9), 6101 (2016)

    CAS  Google Scholar 

  27. Y.H. Chen, Z.H. Huang, M.M. Lu, W.Q. Cao, J. Yuan, D.Q. Zhang, M.S. Cao, J. Mater. Chem. A 3(24), 12621 (2015)

    CAS  Google Scholar 

  28. X. Sun, J. He, G. Li, J. Tang, T. Wang, Y. Guo, H. Xue, J. Mater. Chem. C 1(4), 765 (2013)

    CAS  Google Scholar 

  29. H.G. Wang, F.B. Meng, F. Huang, C.F. Jing, Y. Li, W. Wei, Z.W. Zhou, ACS Appl. Mater. Interfaces 11(12), 12142 (2019)

    CAS  Google Scholar 

  30. I. Abdalla, A. Salim, M. Zhu, J. Yu, Z. Li, B. Ding, ACS Appl. Mater. Interfaces 10(51), 44561 (2018)

    CAS  Google Scholar 

  31. D. Li, H. Liao, H. Kikuchi, T. Liu, ACS Appl. Mater. Interfaces 9(51), 44704 (2017)

    CAS  Google Scholar 

  32. B. Wen, M. Cao, M. Lu, W. Cao, H. Shi, J. Liu, X. Wang, H. Jin, X. Fang, W. Wang, J. Yuan, Adv. Mater. 26(21), 3484 (2014)

    CAS  Google Scholar 

  33. S. Dong, J. Song, X. Zhang, P. Hu, B. Sun, S. Zhou, X. Luo, J. Mater. Chem. C 5(45), 11837 (2017)

    CAS  Google Scholar 

  34. Y. Huang, W.L. Song, C. Wang, Y. Xu, W. Wei, M. Chen, L. Tang, D. Fang, Compos. Sci. Technol. 162, 206 (2018)

    CAS  Google Scholar 

  35. K.L. Zhang, J.Y. Zhang, Z.L. Hou, S. Bi, Q.L. Zhao, Carbon 141, 608 (2019)

    CAS  Google Scholar 

  36. G.S. Wang, X.J. Zhang, Y.Z. Wei, S. He, L. Guo, M.S. Cao, J. Mater. Chem. A 1(24), 7031 (2013)

    CAS  Google Scholar 

  37. F. Movassagh-Alanagh, A.B. Khiabani, H. Salimkhani, Appl. Surf. Sci. 420, 726 (2017)

    CAS  Google Scholar 

  38. F. Movassagh-Alanagh, S. Jalilian, R. Shemshadi, A. Kavianpour, Synth. Met. 250, 20 (2019)

    CAS  Google Scholar 

  39. Y. Wang, X. Gao, X.M. Wu, C.Y. Luo, Ceram. Int. 46(2), 1560 (2020)

    CAS  Google Scholar 

  40. Y. Wang, X. Gao, Y.Q. Fu, X.M. Wu, Q.G. Wang, W.Z. Zhang, C.Y. Luo, Compos. Part. B 169, 221 (2019)

    CAS  Google Scholar 

  41. X. Li, Y.F. Zhu, X.Q. Liu, B.B. Xu, Q.Q. Ni, Compos. Struct. 238, 111954 (2020)

    Google Scholar 

  42. L. Yu, Q. Yang, J. Liao, Y. Zhu, X. Li, W. Yang, Y. Fu, Chem. Eng. J. 352, 490 (2018)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Zhejiang Province, China (Grant No. LY19E030009), the National Natural Science Foundation of China (NSFC) (Grant No. 51503183) and Key Program for International Science and Technology Cooperation Projects of Ministry of Science and Technology of China (No. 2016YFE0125900), The Fundamental Research Funds of Zhejiang Sci–Tech University (Grant No. 2019Q009), and Science and Technology Planning Project of Sichuan Province (No. 2020YFH0053).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yao-Feng Zhu or Fan-Bin Meng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (PDF 1138 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Zhu, YF., Meng, FB. et al. Porous VGCF@polyaniline nanohybrids with manipulated porous structures for effective microwave absorption. J Mater Sci: Mater Electron 31, 12830–12841 (2020). https://doi.org/10.1007/s10854-020-03836-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03836-3

Navigation