Skip to main content
Log in

Effect of Gd substitution on the dielectric and magnetic properties of BSFO-based multiferroic system

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The polycrystalline samples of Bi0.9−xSm0.1GdxFeO3 (BSFO) perovskites system, modified with the Gd substitution (0.0 ≤ x ≤ 0.1), were prepared using a solid-state ceramic route. In the present work, the effect of A-site double substitution (Sm and Gd) on Polomska transition before and after solid solubility limit is studied using high-temperature dielectric and conductivity measurements. The X-ray diffraction studies suggest the phase transformation from pure rhombohedral into pseudocubic up to x ≤ 0.05. The lattice parameters are observed to decrease for x ≤ 0.05. After x > 0.05, secondary phases start appearing due to attaining the solubility limit of BiFeO3. The SEM study reveals that the grains are of hexagonal shape and grain sizes are obtained in the range of ∼ 1.9–2.5 µm. The remanent magnetization has observed to increase linearly with the concentration of Gd substitution in BSFO. In the temperature range 80 to 300 °C, the Bi0.825 Sm0.1Gd0.075FeO3 sample (i.e., x = 0.075) follows Arrhenius behavior with almost single slope with significantly enhanced conductivity. This shows that double substitution has suppressed the dielectric anomalies of bismuth ferrite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. S.V. Vijayasundaram, G. Suresh, R.A. Mondal, R. Kanagadurai, Composition–driven enhanced magnetic properties and magnetoelectric coupling in Gd substituted BiFeO3 nanoparticles. J. Magn. Magn. Mater. 418, 30–36 (2016)

    CAS  Google Scholar 

  2. P. Tang, D. Kuang, S. Yang, Y. Zhang, Structural, Morphological and multiferroic properties of the hydrothermally grown gadolinium (Gd) and manganese (Mn) doped sub-micron bismuth ferrites. J. Alloys Comp. 656, 912–919 (2016)

    CAS  Google Scholar 

  3. G. Catalan, J.F. Scott, Physics and Applications of Bismuth Ferrite. Adv. Mater. 2463, 21–24 (2009)

    Google Scholar 

  4. W. Eerenstein, N.D. Mathur, J.F. Scott, Multiferroic and magnetoelectric materials. Nat. Mater. 442, 759–764 (2006)

    CAS  Google Scholar 

  5. R. Ramesh, N.A. Spaldin, Multiferroics: progress and prospects in thin film. Nat. Mater. 6, 21–29 (2007)

    CAS  Google Scholar 

  6. A. Kumar, K.L. Yadav, Study on multicaloric effect of CuO induced multiferroic. J. Appl. Phys. 116, 083907 (2014)

    Google Scholar 

  7. D. Tzankov, V. Skumryev, M. Aroyo, R. Puźniak, M.D. Kuzmin, M. Mikhov, Magnetic anisotropy of multiferroic HoMn2O5 single crystal. Solid State Commun. 147, 212–216 (2008)

    CAS  Google Scholar 

  8. T. Ahmad, I.H. Lone, M. Ubaidullah, Structural characterization and multiferroic properties of hexagonal nano-sized YMnO3 developed by a low temperature precursor route. RSC Adv. 5, 58065 (2015)

    CAS  Google Scholar 

  9. D.I. Khomskii, Multiferroics: different ways to combine magnetism and ferroelectricity. J. Magn. Magn. Mater. 306(1), 1–8 (2006)

    CAS  Google Scholar 

  10. O.N. Verma, P.K. Jha, P. Singh, A structural–electrical property correlation in A-site double substituted lanthanum aluminate. J. Appl. Phys. 122, 225106 (2017)

    Google Scholar 

  11. J. Wu, Z. Fan, D. Xiao, J. Zhu, J. Wang, Multiferroic Bismuth ferrite- based materials for multifunctional applications: ceramic bulks, thin films, and nano-structures. Progress Mater. Sci. 84, 335–402 (2016)

    CAS  Google Scholar 

  12. J. Wu, J. Wang, D. Xiao, J. Zhu, A method to improve electrical properties of BiFeO3 thin films. ACS Appl. Mater. Interfaces. 43, 1182–1185 (2012)

    Google Scholar 

  13. A.I. Iorgu, F. Maxim, C. Matei, L.P. Ferreira, P. Ferreira, M.M. Cruz, D. Berger, Fast synthesis of rare-earth (Pr3+, Sm3+, Eu3+ and Gd3+) doped bismuth ferrite powders with enhanced magnetic properties. J. Alloys Compd. 629, 62–68 (2015)

    CAS  Google Scholar 

  14. S. Gupta, M. Tomar, V. Gupta, Magnetic hysteresis of cerium doped bismuth ferrite thin films. J. Magn. Magn. Mater. 378, 333–339 (2015)

    CAS  Google Scholar 

  15. A. Mukherjee, M. Banerjee, S. Basu, M.D. Mukadam, S.M. Yusuf, M. Pal, Enhanced magneto-dielectric and multiferroic properties of Er-doped bismuth ferrite nanoparticles. Mater. Chem. Phys. 162, 140–148 (2015)

    CAS  Google Scholar 

  16. M.N. Akhtar, T. Hussain, M.A. Khan, M. Ahmad, Structural, magnetic, dielectric and high frequency response of synthesized rare earth doped bismuth nano garnets (BIG). Results Phys. 10, 784–793 (2018)

    Google Scholar 

  17. C. Nayek, C. Thirmal, A. Pal, P. Murugavel, Study of enhanced magnetism in Lu doped multiferroic bismuth ferrite. Mater. Sci. Eng. B. 199, 121–124 (2015)

    CAS  Google Scholar 

  18. F.G. Garcia, C.S. Riccardi, A.Z. Simões, Lanthanum doped BiFeO3 powders: synthesis and characterization. J. Alloys Compd. 501, 25–29 (2010)

    Google Scholar 

  19. D. Wang, M. Wang, F. Liu, Y. Cui, Q. Zhao, H. Sun, H. Jin, M. Cao, Sol-gel synthesis of Nd-doped BiFeO3 multiferroic and its characterization. Ceram. Int. 41, 8768–8772 (2015)

    CAS  Google Scholar 

  20. R. Makhdoom, M.J. Akhtar, M.A. Rafiq, M.M. Hassan, Investigation of transport behavior in Ba doped BiFeO3. Ceram. Int. 38, 3829–3834 (2012)

    CAS  Google Scholar 

  21. L. Yao, X. Wu, S. Yang, Y. Zhang, Structural and optical properties of Ca doped BiFeO3 thin films prepared by a sol-gel method. Ceram. Int. 43, 470–473 (2017)

    Google Scholar 

  22. G. Dhir, P. Uniyal, N.K. Verma, Multiferroic properties of Sr-doped BiFeO3 nanoparticles. Phys. B Condens. Matter. 531, 51–57 (2018)

    CAS  Google Scholar 

  23. Q. Xu, H. Zai, D. Wu, T. Qiu, M.X. Xu, The magnetic properties of Bi(Fe0.95Co0.05)O3 ceramics. Appl. Phys. Lett. 95, 112510 (2009)

    Google Scholar 

  24. M. Kumar, K.L. Yadav, Rapid liquid phase sintered Mn-doped BiFeO3 ceramics with enhanced polarization and weak magnetization. Appl. Phys. Lett. 91, 24290 (2007)

    Google Scholar 

  25. Y.K. Jun, W.T. Moon, C.M. Chang, H.S. Kim, H.S. Ryu, J.W. Kim, Effects of Nb–substitutionon electric and magnetic properties in multiferroic BiFeO3 ceramics. Solid State Commun. 75, 5080 (2005)

    Google Scholar 

  26. T.D. Rao, A. Kumari, M.K. Niranjan, S. Asthana, Enhancement of magnetic and electrical properties in Sc substituted BiFeO3 multiferroic. Phys. B Condens. Matter. 448, 267–272 (2014)

    Google Scholar 

  27. Y.J. Yoo, J.S. Hwang, Y.P. Lee, J.S. Park, J.H. Kang, J. Kim, High ferromagnetic transition temperature in multiferroic BiFe0.95Ni0.05O3 compound. J. Appl. Phys. 114, 163902 (2013)

    Google Scholar 

  28. V.A. Khomchenko, L.C.J. Pereira, J.A. Paixão, Structural and magnetic phase transitions in Bi1-xNdxFe1-xMnxO3 multiferroics. J. Appl. Phys. 115(3), 034102 (2014)

    Google Scholar 

  29. X.J. Xi, S.Y. Wang, W.F. Liu, H.J. Wang, F. Guo, X. Wang, Modulation of electric conduction in La-Mg co-doped multiferroic BiFeO3 ceramics. J. Alloy Compd. 603, 224–239 (2014)

    CAS  Google Scholar 

  30. V.A. Khomchenko, L.C.J. Pereira, J.A. Paixão, Substitution-driven structural and magnetic phase transitions in Bi0.86(LaSm)0.14FeO3 system. J. Phys. D Appl. Phys. 44, 185406 (2011)

    Google Scholar 

  31. P.K. Jha, P.A. Jha, P. Singh, R. Ranjan, R.K. Dwivedi, Sm/Ti co-substituted bismuth ferrite multiferroics: reciprocity between tetragonality and piezoelectricity. Phys. Chem. Chem. Phys. 19, 26285 (2017)

    CAS  Google Scholar 

  32. D. Maurya, H. Thota, A. Garg, B. Pandey, P. Chand, H.C. Verma, Magnetic studies of multiferroic Bi(1–x)Sm(x)FeO(3) ceramics synthesized by mechanical activation assisted processes. J. Phys. Condens. Matter. 2(21), 026007 (2009)

    Google Scholar 

  33. C.J. Cheng, A.Y. Borisevich, D. Kan, I. Takeuchi, V. Nagarajan, Nanoscale, structural and chemical properties of antipolar clusters in Sm-doped BiFeO3 ferroelectric epitaxial thin films. Chem. Mater. 22, 2588–2596 (2010)

    CAS  Google Scholar 

  34. K.S. Nalwa, A. Garg, A. Upadhyay, Effect of samarium substitutionon the properties of solid-state synthesized multiferroic bismuth ferrite. Mate. Lett. 62, 878–881 (2008)

    CAS  Google Scholar 

  35. J. Schiemer, R.L. Withers, M.A. Carpenter, Y. Liu, J.L. Wang, L. Noren, Q. Li, W. Hutchison, Temperature-dependent electrical, elastic and magnetic properties of sol–gel synthesized Bi0.9Ln0.1FeO3(Ln = Nd, Sm). J. Phys. Condens. Matter. 24, 125901 (2012)

    CAS  Google Scholar 

  36. V.S. Puli, D.K. Pradhan, R. Martínez, I. Coondoo, N. Panwar, R.S. Katiyar, Temperature dependent magnetic, dielectric studies of Sm-substituted bulk BiFeO3. J. Supercond. Nov. Magn. 25, 1109–1114 (2012)

    CAS  Google Scholar 

  37. A. Mukherjee, S. Basu, P.K. Manna, S.M. Yusuf, M. Pal, Giant magneto dielectric and enhanced multiferroic properties of Sm doped bismuth ferrite nanoparticles. J. Mater. Chem. C 2, 5885–5891 (2014)

    CAS  Google Scholar 

  38. C. Anthonyraj, M. Muneeswaran, S.G. Raj, N.V. Giridharan, V. Sivakumar, G. Senguttuvan, Effect of samarium substitutionon the structural, optical and magnetic properties of sol–gel processed BiFeO3 thin films. J. Mater Sci. Mater. Electron. 26, 49–58 (2015)

    CAS  Google Scholar 

  39. E. Palaimiene, J. Macutkevic, D.V. Karpinsky, A.L. Kholkin, J. Banys, Dielectric investigations of polycrystalline samarium bismuth ferrite ceramic. Appl. Phys. Lett. 106, 012906 (2015)

    Google Scholar 

  40. H. Singh, K.L. Yadav, Structural, dielectric, vibrational and magnetic properties of Sm doped BiFeO3 multiferroic ceramics prepared by a rapid liquid phase sintering method. Ceram. Int. 41, 9285–9295 (2015)

    CAS  Google Scholar 

  41. W. Sun, J.F. Li, Q. Yu, L.Q. Cheng, Phase transition and piezoelectricity of sol–gel-processed Sm-doped BiFeO3 thin films on Pt(111)/Ti/SiO2/Si substrates. J. Mater. Chem. C. 3, 2115 (2015)

    CAS  Google Scholar 

  42. S.N. Kallaev, S.A. Sadykov, Z.M. Omarov, A.Y. Kurbaitaev, L.A. Reznichenko, S.V. Khasbulatov, Dielectric properties and specific Heat of Bi1–xSmxFeO3 multiferroics. Phys. Solid State. 4(58), 682–684 (2016)

    Google Scholar 

  43. B. Yotburut, P. Thongba, T. Yamwong, S. Maensiri, Synthesis and characterization of multiferroic Sm-doped BiFeO3, nanopowders and their bulk dielectric properties. J. Magn. Magn. Mater 437, 51–61 (2017)

    CAS  Google Scholar 

  44. B. Deka, S. Ravi, D. Pamu, Evolution of structural transition, grain growth inhibition and collinear anti-ferromagnetism in Bi1-xSmxFeO3 (x = 0 to 0.3) and their effects on dielectric and magnetic properties. Ceram. Int. 43, 16580–16592 (2017)

    CAS  Google Scholar 

  45. E.G. Gonzalez, A. Perejon, P.E.S. Jimenez, M.A. Hayward, J.M. Criado, M.J. Sayagues, L.A. Perez-Maqueda, Characterization of mechano-synthesized Bi1-xSmxFeO3 samples unencumbered by secondary phases or compositional inhomogeneity. J. Alloy. Compd. 711, 541–551 (2017)

    Google Scholar 

  46. W. Yan, Z.L. Hou, S. Bi, R.B. Cui, M. Tang, Enhanced magnetization and bias voltage-dependent dielectric properties of Sm-doped BiFeO3 multiferroic nano-fibers. J. Mater. Sci. 53, 10249–10260 (2018)

    CAS  Google Scholar 

  47. H.H. Singh, H.B. Sharma, Enhanced electrical and magnetic properties of samarium (Sm) doped multiferroic bismuth ferrite (BFO) ceramics. Integr. Ferroelectr. 203(1), 120–132 (2019)

    CAS  Google Scholar 

  48. M.M. Rhaman, M.A. Matin, M.A. Hakim, M.F. Islam, Dielectric, ferroelectric and ferromagnetic properties of samarium doped multiferroic bismuth ferrite. Mater. Res. Express. 6, 125080 (2019)

    CAS  Google Scholar 

  49. S.A. Sadykov, S.N. Kallaev, N.M.-R. Alikhanov, K. Bormanis, A. Kalvane, Dielectric properties and ac conductivities of Bi1-xSmxFeO3 ceramics. Integr. Ferroelectr. 196, 100–104 (2019)

    CAS  Google Scholar 

  50. R.A. Golda, A. Marikani, E.J. Alex, Development of novel Bi1-xSmxFeO3 based polymer-ceramic nanocomposite for microwave application. J. Mater. Sci. Mater. Electron. 31, 324–336 (2020)

    CAS  Google Scholar 

  51. R.S.N. Ain, S.A. Halim, M. Hashim, Effect of Sm-substitutionon magnetic and dielectric properties of BiFeO3. Adv. Mater. Res. 501, 329–333 (2012)

    CAS  Google Scholar 

  52. V.A. Khomchenko, J.A. Paixao, V.V. Shvartsman, P. Borisov, W.K. Leemann, D.V. Karpinskyc, A.L. Kholkinc, Effect of Sm substitution on ferroelectric and magnetic properties of BiFeO3. Scr. Mater. 62, 238–241 (2010)

    CAS  Google Scholar 

  53. P.K. Jha, P.A. Jha, V. Singh, P. Kumar, K. Asokan, R.K. Dwivedi, Diffuse phase ferroelectric vs. Polomska transition in (1–x) BiFeO3-(x) BaZr0.025Ti0.975O3 (0.1 ≤ x ≤ 0.3) solid solutions. J. Appl. Phys. 117, 024102 (2015)

    Google Scholar 

  54. M. Polomska, W. Kaczmare, Z. Pajak, Electric and magnetic properties of (B1-xLax)FeO3 solid solutions Phys. Status Solidi A 23, 567 (1974)

    CAS  Google Scholar 

  55. P.M. Woodward, Octahedral tilting in Perovskites. II. Structure stabilizing forces. Acta Cryst. 53, 44–66 (1997)

    Google Scholar 

  56. S. Sharma, A. Mishra, P. Saravanan, O.P. Pandey, P. Sharma, Effect of Gd–substitution on the ferroelectric and magnetic properties of BiFeO3 processed by high–energy ball milling. J. Magn. Magn. Mater. 418, 188–193 (2016)

    CAS  Google Scholar 

  57. P.K. Jha, P.A. Jha, G. Srivastava, A.K. Jha, R.K. Kotnala, R.K. Dwivedi, Analytical comparison of magnetic and electrical properties using modified Landau theory in bismuth ferrite: effect of milling. J. Magn. Magn. Mater. 49, 95–99 (2014)

    Google Scholar 

  58. X. Xue, G. Tan, W. Liu, H. Ren, Structural, electrical and magnetic properties of (Bi0.9RE0.1)(Fe0.97Co0.03)O3 (RE = Nd and Gd) thin films. Mater. Res. Bull. 52, 143–150 (2014)

    CAS  Google Scholar 

  59. A. Ablat, R. Wu, M. Mamat, J. Li, E. Muhemmed, C. Si, R. Wu, J. Wang, H. Qian, K. Ibrahim, Structural analysis and magnetic properties of Gd doped BiFeO3 ceramics. Ceram. Int. 40, 14083–14089 (2014)

    CAS  Google Scholar 

  60. G. Dong, G. Tan, Y. Luo, W. Liu, A. Xia, H. Ren, A comparative investigation on structure and multiferroic properties of bismuth ferrite thin films by multielement co-doping. Mater. Res. Bull. 60, 596–603 (2014)

    CAS  Google Scholar 

  61. G.S. Arya, R.K. Sharma, N.S. Negi, Enhanced magnetic properties of Sm and Mn co-doped BiFeO3 nanoparticles at room temperature. Mater. Lett. 93, 341–344 (2013)

    CAS  Google Scholar 

  62. M. Gowrishankar, D.R. Babu, S. Madeswaran, Effect of Gd-Ti co-substitution on structural, magnetic and electrical properties of multiferroic BiFeO3. J. Magn. Magn. Mater. 418, 54–61 (2016)

    CAS  Google Scholar 

  63. M. Arora, M. Kumar, Electron spin resonance probed enhanced magnetization and optical properties of Sm doped BiFeO3 nanoparticles. Mater. Lett. 137, 285–288 (2014)

    CAS  Google Scholar 

  64. P. Godara, A. Agarwal, N. Ahlawat, S. Sanghi, Crystal structure refinement, dielectric and magnetic properties of Sm modified BiFeO3 multiferroic. J. Mole. Struct. 1097, 207–213 (2015)

    CAS  Google Scholar 

  65. B.K. Vashisth, J.S. Bangruwa, S.P. Gairola, V. Verma, Structural, dielectric, ferroelectric and magnetic properties of Gd doped BiFeO3. Integr. Ferroelectr. 194, 21–27 (2018)

    CAS  Google Scholar 

  66. M.A. Basith, A. Billah, M.A. Jalil, N. Yesmin, The 10% Gd and Ti co-doped BiFeO3: a promising multiferroic material. Condens. Mater. Mtrl. Sci. 694, 792–799 (2017)

    CAS  Google Scholar 

  67. C. Fanggao, S. Guilin, F. Kun, Q. Ping, Z. Qijun, Effect of gadolinium substitution on dielectric properties of bismuth ferrite. J. Rare Earths. 24, 273–276 (2006)

    Google Scholar 

  68. A.S. Kumar, P. Kumar, R. Walia, V. Verma, Improved ferroelectric, magnetic and photovoltaic properties of Pr doped multiferroic bismuth ferrites for photovoltaic application. Results Phys. 14, 102403 (2019)

    Google Scholar 

  69. D. Kumar, A.S. Bangwal, S. Singh, P.A. Jha, P. Singh, High-temperature conduction mechanism of samarium ferrite substituted sodium niobate ceramics. Phys. B Phys. Condens. Matter 582, 412028 (2020)

    CAS  Google Scholar 

  70. R.K. Dwivedi, D. Kumar, O. Parkash, Valence compensated perovskite oxide system Ca1-xLaxTi1-xCrxO3 part II electrical transport behavior. J. Mater. Sci. 36, 3649–3655 (2001)

    CAS  Google Scholar 

Download references

Acknowledgments

The Authors are very thankful to (MHRD), Govt. of India. Also, hearty thanks to the Faculty team of the Department of Ceramic Engineering and CIFC staff (IIT-BHU) for providing characterizations facility. We are also grateful to Dr. Preetam Singh (Department Of Ceramic Engineering, IIT-BHU) and Dr. Priyanka A. Jha (Department of Physics, IIT-BHU) for their kind support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priyanka Verma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, P., Roy, P.K. Effect of Gd substitution on the dielectric and magnetic properties of BSFO-based multiferroic system. J Mater Sci: Mater Electron 31, 13028–13039 (2020). https://doi.org/10.1007/s10854-020-03853-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03853-2

Navigation