Skip to main content

Advertisement

Log in

Effects of catalyst preparation method and reaction parameters on the ultrasound assisted Photocatalytic oxidation of reactive yellow 84 dye

  • Research article
  • Published:
Journal of Environmental Health Science and Engineering Aims and scope Submit manuscript

Abstract

In this study, the Heterogeneous Sono-photocatalytic Process was used to degrade Reactive Yellow 84 (RY 84) dye dissolved in water over iron containing TiO2 and TiO2-Ce catalysts. The catalysts were prepared by sol-gel and incipient wetness impregnation methods and characterized using XRD, SEM, Nitrogen adsorption, UV-Vis DRS and ICP-AES measurements. The TiO2 catalyst containing 1% (in weight) iron, prepared by incipient wetness impregnation technique and calcined at 300 °C (1%Fe/TiO2–300 °C (IW)) was found to be the most effective catalyst. Parametric study was carried out over this catalyst and COD removal of 55% and TOC removal of 38% were achieved while the decolorization efficiency reached 100% after 45 min of reaction at the optimum conditions of, (25 mg/L of RY 84 solution, 0.5 g/L of catalyst, 5 mM of H2O2, a temperature of 25 °C, pH = 6 and US at a power of 40 W). Decolorization of RY 84 obeyed the first order kinetics with an activation energy of 20.7 kJ/mol. Sonication increased the decolorization efficiency of the heterogeneous Fenton process (UV + Catalyst+H2O2) from 92.7% to 97.5% after 30 min of reaction, with the COD and TOC reductions increasing from 87% to 90% and 48% to 57% after 120 min of reaction, respectively. US also decreased the toxicity of the RY 84 dye. The results obtained from this study show that, iron containing TiO2 and TiO2-Ce catalysts could be efficiently used in the hybrid process of ultrasound assisted heterogeneous photocatalytic oxidation in a wide range of experimental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Duran A. The state of the Turkish textile and ready wear industries. İnsan ve Toplum Bilimleri Araştırma Dergisi. 2016;5:205–19.

    Google Scholar 

  2. Dönmez Ö, Gündüz G. Degradation of Reactive Yellow 84 (RY 84) by the ultrasound assisted photo-Fenton like process with Fe/TiO2 and Fe/TiO2-Ce catalysts. PhD Thesis. Turkey: Ege University, Chemical Engineering Department; 2015.

    Google Scholar 

  3. Solmaz SKA, Birgul A, Ustun GE, Yonar T. Colour and COD removal from textile effluent by coagulation and advanced oxidation processes. Color Technol. 2006;122:102–9.

    CAS  Google Scholar 

  4. Kritikos DE, Xekoukoulotakis NP, Psillakis E, Mantzavinos D. Photocatalytic degradation of reactive black 5 in aqueous solutions: effect of operating conditions and coupling with ultrasound irradiation. Water Res. 2007;41:2236–46.

    CAS  Google Scholar 

  5. He ZQ, Song S, Qiu JP, Yao J, Cao XY, Hu YQ, et al. Decolorization of CI reactive yellow 84 in aqueous solution by electrocoagulation enhanced with ozone: influence of operating conditions. Environ Technol. 2007a;28:1257–63.

    CAS  Google Scholar 

  6. He ZQ, Song S, Xia M, Qiu JP, Ying HP, Lu BS, et al. Mineralization of CI reactive yellow 84 in aqueous solution by sonolytic ozonation. Chemosphere. 2007b;69:191–9.

    CAS  Google Scholar 

  7. Fard RF, Sar MEK, Fahiminia M, Mirzaei N, Yousefi N, Mansoorian HJ, et al. Efficiency of multi walled carbon nanotubes for removing direct blue 71 from aqueous solutions. Eurasian J Anal Chem. 2018;13:1–10.

    Google Scholar 

  8. Akbal F. Photocatalytic degradation of organic dyes in the presence of titanium dioxide under UV and solar light: effect of operational parameters. Environ Prog. 2005;24:317–22.

    CAS  Google Scholar 

  9. Lops C, Ancona A, Cesare K, Dumontel B, Garino N, Canavese G, et al. Sono-photocatalytic degradation mechanisms of Rhodamine B dye via radicals generation by micro and nano-particles of ZnO. Appl Catal B-Environ. 2019;243:629–40.

    CAS  Google Scholar 

  10. Dükkanci M. Heterogeneous Sonocatalytic degradation of Bisphenol-a and the influence of the reaction parameters and ultrasonic frequency. Water Sci Technol. 2019;79:386–97.

    Google Scholar 

  11. Dükkanci M. A parametric study on the heterogeneous photo-Fenton-like oxidation of Bisphenol-a over an Fe/TiO2 catalyst under visible light. J Polytech. 2017;20:25–36.

    Google Scholar 

  12. Arana J, Diaz OG, Rodriguez JMD, Melian JAH, Cabo CGI, Pena JP, et al. Role of Fe3+/Fe2+ as TiO2 dopant ions in photocatalytic degradation of carboxylic acids. J Mol Catal A-Chem. 2003;197:157–71.

    CAS  Google Scholar 

  13. Demir N, Gündüz G, Dükkancı M. Degradation of a textile dye, Rhodamine 6G (Rh6G), by heterogeneous sono-photocatalytic process in the presence of Fe-containing TiO2 catalysts. Environ Sci Pollut R. 2015;22:3193–201.

    CAS  Google Scholar 

  14. Sun S, Ding JJ, Bao J, Gao C, Qi ZM, Yang XY, et al. Photocatalytic degradation of gaseous toluene on Fe-TiO2 under visible light irradiation: a study on the structure, activity and deactivation mechanism. Appl Surf Sci. 2012;258:5031–7.

    CAS  Google Scholar 

  15. Tayade RJ, Surolia PK, Kulkarni RG, Jasra RV. Photocatalytic degradation of dyes and organic contaminants in water using nanocrystalline anatase and rutile TiO2. Scie Technol Advan Mater. 2007;8:455–62.

    CAS  Google Scholar 

  16. Mi JL, Johnsen S, Clausen C, Hald P, Lock N, So L, et al. Highly controlled crystallite size and crystallinity of pure and iron-doped anatase-TiO2 nanocrystals by continuous flow supercritical synthesis. J Mater Res. 2013;28:333–9.

    CAS  Google Scholar 

  17. Yalcin Y, Kilic M, Cinar Z. Fe+3-doped TiO2: A combined experimental and computational approach to the evaluation of visible light activity. Appl Catal B-Environ. 2010;99:469–77.

    CAS  Google Scholar 

  18. Castro CA, Centeno A, Giraldo SA. Iron promotion of the TiO2 photosensitization process towards the photocatalytic oxidation of azo dyes under solar-simulated light irradiation. Mater Chem Phys. 2011;129:1176–83.

    CAS  Google Scholar 

  19. Subha PP, Jayaraj MK. Solar photocatalytic degradation of methyl orange dye using TiO2 nanoparticles synthesised by sol-gel method in neutral medium. Journal Exper Nanoscience. 2015;10:1106–15.

    CAS  Google Scholar 

  20. Binas V. Modified TiO2 based photocatalysts for improved air and health quality. J Mater. 2017;3:3–16.

    Google Scholar 

  21. Sivakumar S, Selvaraj A, Ramasamy AK, Balasubramanian V. Enhanced Photocatalytic Degradation of Reactive Dyes over FeTiO3/TiO2 Heterojunction in the Presence of H2O2. Water Air Soil Pollut. 2013;224/1529:1–13.

    Google Scholar 

  22. Konstantinou IK, Albanis TA. TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations - A review. Appl Catal B-Environ. 2004;49:1–14.

    CAS  Google Scholar 

  23. Zhong X, Royer S, Zhang H, Huang QQ, Xiang LJ, Valange S, et al. Mesoporous silica iron-doped as stable and efficient heterogeneous catalyst for the degradation of CI acid Orange 7 using sono-photo-Fenton process. Sep Purif Technol. 2011;80:163–71.

    CAS  Google Scholar 

  24. Madhavan J, Sathishkumar P, Anandan S, Grieser F, Ashokkumar M. Sono-photocatalytic degradation of monocrotophos using TiO2 and Fe3+. J Hazard Mater. 2010;177:944–9.

    CAS  Google Scholar 

  25. Muruganandham M, Swaminathan M. Photochemical oxidation of reactive azo dye with UV-H2O2 process. Dyes Pigments. 2004;62:269–75.

    CAS  Google Scholar 

  26. Neamtu M, Siminiceanu H, Yediler A, Kettrup A. Kinetics of decolorization and mineralization of reactive azo dyes in aqueous solution by the UV/H2O2 oxidation. Dyes Pigments. 2002;53:93–9.

    CAS  Google Scholar 

  27. Barka N, Qourzal S, Assabbane A, Nounah A, Ait-Ichou Y. Photocatalytic degradation of an azo reactive dye, reactive yellow 84, in water using an industrial titanium dioxide coated media. Arab J Chem. 2010;3:279–83.

    CAS  Google Scholar 

  28. Dükkanci M, Gunduz G, Yilmaz S, Prihod'ko RV. Heterogeneous Fenton-like degradation of Rhodamine 6G in water using CuFeZSM-5 zeolite catalyst prepared by hydrothermal synthesis. J Hazard Mater. 2010;181:343–50.

    Google Scholar 

  29. Aguilar O, Angeles C, Castillo CO, Martinez C, Rodriguez R, Ruiz RS, et al. On the ultrasonic degradation of Rhodamine B in water: kinetics and operational conditions effect. Environ Technol. 2014;35:1183–9.

    CAS  Google Scholar 

  30. Gogate PR, Pandit AB. A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions. Adv Environ Res. 2004;8:501–51.

    CAS  Google Scholar 

  31. Wang XK, Chen GH, Guo WL. Sonochemical degradation kinetics of methyl iolet in aqueous solutions. Molecules. 2003;8:40–4.

    CAS  Google Scholar 

  32. Kansal SK, Singh M, Sud D. Studies on photodegradation of two commercial dyes in aqueous phase using different photocatalysts. J Hazard Mater. 2007;141:581–90.

    CAS  Google Scholar 

  33. Ramirez JH, Maldonado-Hodar FJ, Perez-Cadenas AF, Moreno-Castilla C, Costa CA, Madeira LM. Azo-dye Orange II degradation by heterogeneous Fenton-like reaction using carbon-Fe catalysts. Appl Catal B-Environ. 2007;75:312–23.

    CAS  Google Scholar 

  34. Neamtu M, Catrineseu C, Kettrup A. Effect of dealumination of iron(III)-exchanged Y zeolites on oxidation of reactive yellow 84 azo dye in the presence of hydrogen peroxide. Appl Catal B-Environ. 2004;51:149–57.

    CAS  Google Scholar 

  35. Bazrafshan E, Mostafapour FK, Hosseine AR, Khorshid AR, Mahvi AH. Decolorisation of Reactive Red 120 dye by using walled carbon nanotubes in aqueous solutions. J CHEM-NY. (2013); Article ID 938374: 1–8.

  36. Bazgir A, Khorshidi A, Kamani H, Asharafi AD, Naghipour D. Modeling of azo dyes adsorption on magnetic NiFe2O4/RGO nanocomposite using response surface methodology. J Environ Health Sci. 2019;17:931–47.

    CAS  Google Scholar 

  37. Ashrafi SD, Kamani H, Arezomand HS, Yousefi N, Mahvi AH. Optimization and modeling of process variables for adsoprtion of basic blue 41 on NaOH-modified rice husk using response surface methodology. Desalin Water Treat. 2016;57:14051–9.

    CAS  Google Scholar 

  38. Kamani H, Safari GH, Asgari G, Ashrafi SD. Data on modeling of enzymatic elimination of direct red 81 using response surface methadology. Data Brief. 2018;18:80–6.

    Google Scholar 

  39. Mehrabian F, Kamani H, Safari GH, Asgari G, Ashrafi SD. Direct Blue 71 removal from aqueous solution by laccase-mediated system: A datset. Data Brief. 2018;19:437–43.

    Google Scholar 

  40. Bazrafshan E, Alipour MR, Mahvi AH. Textile wastewater treatment by application of combined chemical coagulation, electrocoagulation, and adsoprtion. Desalin Water Treat. 2015;20:9203–15.

    Google Scholar 

  41. Kamani H, Nasseri S, Nabizadeh R, Khoobi M, Ashrafi SD, Bazrafshan E, et al. Sonocatalytic oxidation of reactive blue 29 by N-doped TiO2 from aqueous solution. J. Mazandaran Univ. Med. Sci. 2018;28:157–69.

    Google Scholar 

  42. Kamani H, Bazrafshan E, Ashrafi SD, Sancholi F. Efficeinecy of sono-nano-catalytic process of TiO2 nano-particle in removal of erythromycin and metronidazole from aqueous solution. J Mazandaran Univ Med Sci. 2017;27:140–54.

    Google Scholar 

  43. Yang JK, Lee SM, Farrokhi M, Giahi O, Sibona S. Photocatalytic removal of Cr(IV) with illuminated TiO2. Desalin Water Treat. 2012;46:375–80.

    CAS  Google Scholar 

  44. Rahimi S, Ahmadian M, Barati R, Yousefi N, Moussavi SP, Rahimi K, et al. Photocatalytic removal of cadmium (II) and lead (II) from simulated wastewater at continous and batch system. Int J Environ Health Eng. 2014;3:90–4.

    CAS  Google Scholar 

  45. Maezawa A, Nakadoi H, Suzuki K, Furusawa T, Suzuki Y, Uchida S. Treatment of dye wastewater by using photo-catalytic oxidation with sonication. Ultrason Sonochem. 2007;14:615–20.

    CAS  Google Scholar 

  46. Stock NL, Peller J, Vinodgopal K, Kamat PV. Combinative sonolysis and photocatalysis for textile dye degradation. Environ Sci Technol. 2000;34:1747–50.

    CAS  Google Scholar 

  47. Arambasic MB, Bjelic S, Subakov G. Acute toxicity of heavy-metals (copper, lead, zinc), phenol and sodium on allium-cepa l, lepidium-sativum l and daphnia-magna st - comparative investigations and the practical applications. Water Res. 1995;29:497–503.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meral Dükkancı.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dönmez, Ö., Dükkancı, M. & Gündüz, G. Effects of catalyst preparation method and reaction parameters on the ultrasound assisted Photocatalytic oxidation of reactive yellow 84 dye. J Environ Health Sci Engineer 18, 835–851 (2020). https://doi.org/10.1007/s40201-020-00507-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40201-020-00507-7

Key-words

Navigation