Skip to main content
Log in

Flower-Like Nanostructured CuCo2O4 Grown on the Surface of Conductively-Treated Filter Paper as a Flexible Anode for Lithium-Ion Batteries

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We synthesized a flexible lithium-ion battery (LIB) anode with a flower-like CuCo2O4 nanostructure grown on the surface of conductively-treated filter paper. The filter paper, made of cotton fibers, has good flexibility, but its poor conductivity limits its application in flexible electrodes. An Ni coating by magnetron sputtering can significantly improve its conductivity, which enables it to be used as a substrate for flexible electrodes. The flower-like CuCo2O4 nanostructure is assembled from CuCo2O4 nanowires with a diameter of 50 nm, while the CuCo2O4 nanowires are assembled from CuCo2O4 nanoparticles with a size of 10–20 nm. The gap between the stacked CuCo2O4 nanoparticles causes the porous structure of the CuCo2O4 nanowires. The high theoretical capacity of CuCo2O4, the porous structure of the CuCo2O4 nanowires, and the tiny CuCo2O4 nanoparticles lead to the excellent electrochemical performance of the CuCo2O4 flower-like nanostructure. It maintains capacity very well during cycling and delivers a high capacity of 989 mAh g−1 at a current density of 100 mA g−1. As a flexible LIB anode, the composite with the flower-like CuCo2O4 nanostructure grown on the surface of conductively-treated filter paper delivers a stable capacity of 544 mAh g−1 at a current density of 100 mA g−1 and a capacity of 304 mAh g−1 at a high current density of 2000 mA g−1. The conductively-treated filter paper substrate can significantly improve the battery property of the hydrothermally-fabricated CuCo2O4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Q. Cheng, Z.M. Song, T. Ma, B.B. Smith, R. Tang, H.Y. Yu, H.Q. Jiang, and C.K. Chan, Nano Lett. 13, 4969 (2013).

    Article  CAS  Google Scholar 

  2. S. Cao, X. Feng, Y. Song, H. Liu, M. Miao, J. Fang, and L. Shi, ACS Appl. Mater. Interfaces. 8, 1073 (2016).

    Article  CAS  Google Scholar 

  3. Z. Gao, N.N. Song, Y.Y. Zhang, and X.D. Li, Nano Lett. 15, 8194 (2015).

    Article  CAS  Google Scholar 

  4. X.Q. Zhang, X.X. Huang, X. Geng, X.D. Zhang, L.X. Xhong, T. Zhang, and G.W. Wen, J. Electroanal. Chem. 794, 15 (2017).

    Article  CAS  Google Scholar 

  5. L. Wang, Y.Y. Fu, Y.Q. Chen, Y.F. Li, R.H. Zhou, S.H. Chen, and Y.H. Song, J. Alloy. Compd. 724, 1117 (2017).

    Article  CAS  Google Scholar 

  6. H. Zhao, J.H. Wu, J.L. Li, H. Wu, Y. Zhang, and H. Liu, Appl. Surf. Sci. 462, 337 (2018).

    Article  CAS  Google Scholar 

  7. X.H. Ning, Z. Liu, A.P. Hu, Q.L. Tang, B.B. Fan, S.Y. Zhang, W.N. Deng, K.K. Xiao, and X.H. Chen, J. Alloy. Compd. 744, 75 (2018).

    Article  CAS  Google Scholar 

  8. Y. Yue and H. Liang, Small Methods 2, 1800056 (2018).

    Article  Google Scholar 

  9. S. He, B.J. Xin, Z.M. Chen, and Y. Liu, Cellulose 25, 3691 (2018).

    Article  CAS  Google Scholar 

  10. S.X. Jiang, J.T. Xu, Z.M. Chen, R.H. Guo, D.G. Miao, L.H. Peng, Y.X. Wang, and S.M. Shang, J. Mater. Sci.: Mater. Electron. 29, 5624 (2018).

    CAS  Google Scholar 

  11. C.C. Liu, X.L. Li, X.Q. Li, T.Z. Xu, C.Y. Song, K.J. Ogino, and Z.J. Gu, Materials 11, 2033 (2018).

    Article  Google Scholar 

  12. F. Han, X.Y. Su, M.Q. Huang, J.H. Li, Y. Zhang, S.F. Zhao, F. Liu, B. Zhang, Y. Wang, G.P. Zhang, R. Sun, and C.P. Wong, J. Mater. Chem. C 6, 8135 (2018).

    Article  CAS  Google Scholar 

  13. Y. Mao, M.F. Zhu, W. Wang, and D. Yu, Soft Matter 14, 1260 (2018).

    Article  CAS  Google Scholar 

  14. H. Chen, Q. Zhang, J. Wang, Q. Wang, X. Zhou, X. Li, Y. Yang, and K. Zhang, Nano Energy 10, 245 (2014).

    Article  CAS  Google Scholar 

  15. S.G. Mohamed, C.J. Chen, C.K. Chen, S.F. Hu, and R.S. Liu, ACS Appl. Mater. Interfaces 6, 22701 (2014).

    Article  CAS  Google Scholar 

  16. J.F. Li, S.L. Xiong, X.W. Li, and Y.T. Qian, Nanoscale 5, 2045 (2013).

    Article  CAS  Google Scholar 

  17. P. Lavela, J.L. Tirado, and C. Vidal-Abarca, Electrochim. Acta 52, 7986 (2007).

    Article  CAS  Google Scholar 

  18. J. Liu, C. Liu, Y. Wan, W. Liu, Z. Ma, S. Ji, J. Wang, Y. Zhou, P. Hodgson, and Y. Li, Cryst. Eng. Commun. 15, 1578 (2013).

    Article  CAS  Google Scholar 

  19. Y.F. Deng, Q.M. Zhang, S.D. Tang, L.T. Zhang, S.N. Deng, Z.C. Shi, and G.H. Chen, Chem. Commun. 47, 6828 (2011).

    Article  CAS  Google Scholar 

  20. Y. Sharma, N. Sharma, G.V. Subba Rao, and B.V.R. Chowdari, J. Power Sour. 173, 495 (2007).

    Article  CAS  Google Scholar 

  21. S. Sun, Z. Wen, J. Jin, Y. Cui, and Y. Lu, Microporous Microporous Mat. 169, 242 (2013).

    Article  CAS  Google Scholar 

  22. J.L. Cheng, X.H. Li, Z.X. Wang, H.J.J. Guo, W.J. Peng, and Q.Y. Hu, Ceram. Int. 42, 2871 (2016).

    Article  CAS  Google Scholar 

  23. W.P. Kang, Y.B. Tang, W.Y. Li, Z.P. Li, X. Yang, J. Xu, and C.S. Lee, Nanoscale 6, 6551 (2014).

    Article  CAS  Google Scholar 

  24. M.V. Reddy, Y. Cai, J.H. Fan, K.P. Loh, and B.V.R. Chowdari, RSC Adv. 2, 9619 (2012).

    Article  CAS  Google Scholar 

  25. J.J. Ma, H.J. Wang, X. Yang, Y.Q. Chai, and R. Yuan, J. Mater. Chem. A 3, 12038 (2015).

    Article  CAS  Google Scholar 

  26. D.D. Han, H. Hu, B. Liu, G.X. Song, H. Yan, and J. Ding, Ceram. Int. 42, 12460 (2016).

    Article  CAS  Google Scholar 

  27. H. Zhang, Z.Y. Tang, K. Zhang, L. Wang, H.M. Shi, G.H. Zhang, and H.G. Duan, Electrochim. Acta 247, 692 (2017).

    Article  CAS  Google Scholar 

  28. F.E. Niu, N.N. Wang, J. Yue, L. Chen, J. Yang, and Y.T. Qian, Electrochim. Acta 208, 148 (2016).

    Article  CAS  Google Scholar 

  29. Q.H. Tian, P. Chen, Z.X. Zhang, and L. Yang, Carbon 118, 634 (2017).

    Article  CAS  Google Scholar 

  30. Y. Liu, X.D. Yan, B.Q. Xu, J.L. Lan, Y.H. Yu, X.Q. Yang, Y.H. Lin, and C.W. Nan, ACS Appl. Mater. Interfaces 10, 18047 (2018).

    Google Scholar 

  31. L.L. Si, Z.Q. Yuan, J.W. Liang, L. Hu, Y.C. Zhu, and Y.T. Qian, J. Mater. Chem. A 2, 9784 (2014).

    Article  CAS  Google Scholar 

  32. H. Borchert, E.V. Shevchenko, A. Robert, I. Mekis, A. Kornowski, G. Grübel, and H. Weller, Langmuir 21, 1931 (2005).

    Article  CAS  Google Scholar 

  33. V. Tallapally, R.J.A. Esteves, L. Nahar, and I.U. Arachchige, Chem. Mater. 28, 5406 (2016).

    Article  CAS  Google Scholar 

  34. D.G. Gao, Y.H. Zhang, B. Lyu, P.P. Wang, and J.Z. Ma, Carbohydr. Polym. 206, 245 (2019).

    Article  CAS  Google Scholar 

  35. Y. Liu, L.J. Xi, Q. Zhang, H. Guo, A. Wang, W.L. Xu, and Y.L. Wang, Carbohydr. Polym. 214, 117 (2019).

    Article  CAS  Google Scholar 

  36. J.Y. Yu, Z.Y. Pang, C.H. Zheng, T.C. Zhou, J. Zhang, H.M. Zhou, and Q.F. Wei, Appl. Surf. Sci. 470, 84 (2019).

    Article  CAS  Google Scholar 

  37. F. Ali, S.B. Khan, and A.M. Asiri, Int. J. Hydrogen Energy 44, 4143 (2019).

    Article  CAS  Google Scholar 

  38. V. Tallapally, D. Damma, and S.R. Darmakkolla, Chem. Commun. 55, 1560 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is sponsored by the fund from High-energy Beam Intelligent Processing and Green Manufacturing Project of Shanghai Municipal Education Commission. The authors acknowledge the use of the facilities in Shanghai Collaborative Innovation Center of Laser Advanced Manufacturing Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 283 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, F., Yang, Q. Flower-Like Nanostructured CuCo2O4 Grown on the Surface of Conductively-Treated Filter Paper as a Flexible Anode for Lithium-Ion Batteries. J. Electron. Mater. 49, 5488–5497 (2020). https://doi.org/10.1007/s11664-020-08290-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08290-9

Keywords

Navigation