Skip to main content
Log in

Equivalence of a Constrained Cosserat Theory and Antman’s Special Cosserat Theory of a Rod

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

The general nonlinear Cosserat theory of a rod allows for tangential shear deformation, axial extension and a deformable cross-section. Simplified equations are obtained by introducing kinematic constraints and associated constraint responses which force the cross-section to remain rigid. The equations of motion of this constrained Cosserat rod are shown to be equivalent to those of Antman’s nonlinear special Cosserat theory of a rod. Strain measures motivated by the general Cosserat rod theory are used to develop explicit hyperelastic constitutive equations for the force and moment applied to the rod’s ends.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Antman, S.S.: The theory of rods. In: Linear Theories of Elasticity and Thermoelasticity, pp. 641–703. Springer, Berlin (1973)

    Chapter  Google Scholar 

  2. Antman, S.S.: Nonlinear Problems of Elasticity. Applied Mathematical Sciences, vol. 107. Springer, Berlin (1991)

    Google Scholar 

  3. Ericksen, J.L., Truesdell, C.: Exact theory of stress and strain in rods and shells. Arch. Ration. Mech. Anal. 1, 295–323 (1957)

    Article  MathSciNet  Google Scholar 

  4. Green, A.E., Naghdi, P.M., Wenner, M.L.: On the theory of rods. I. Derivations from the three-dimensional equations. Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 337, 451–483 (1974)

    ADS  MathSciNet  MATH  Google Scholar 

  5. Green, A.E., Naghdi, P.M., Wenner, M.L.: On the theory of rods II. Developments by direct approach. Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 337, 485–507 (1974)

    ADS  MathSciNet  MATH  Google Scholar 

  6. O’Reilly, O.M.: Modeling Nonlinear Problems in the Mechanics of Strings and Rods. Springer, Berlin (2017)

    Book  Google Scholar 

  7. Rubin, M.B.: Cosserat Theories: Shells, Rods and Points. Springer Science & Business Media, vol. 79 (2000)

    Book  Google Scholar 

Download references

Acknowledgements

M.B. Rubin acknowledges partial support from his Gerard Swope Chair in Mechanics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. B. Rubin.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Details of Some of the Developments

Appendix: Details of Some of the Developments

Within the context of the three-dimensional theory, the position vector \({\mathbf{X}}^{*}\) of a material point in the reference configuration and the position vector \({\mathbf{x}}^{*}\) of the same material point in the present configuration are proposed in the forms

$$ {\mathbf{X}}^{*} = {\mathbf{X}}^{*}\bigl(\theta ^{\alpha },S\bigr) = { \mathbf{X}}(S) + \theta ^{\alpha }{ \mathbf{D}}_{\alpha }(S) , \qquad { \mathbf{x}}^{*} = { \mathbf{x}}^{*}\bigl(\theta ^{\alpha },S,t\bigr) = { \mathbf{x}}(S,t) + \theta ^{\alpha }{\mathbf{d}}_{\alpha }(S,t) , $$
(43)

where \(\theta ^{i}\) are convected coordinates through the rod’s cross-section and \(\theta ^{3}=S\). It then follows that the covariant base vectors \({\mathbf{G}}_{i}\) in the reference configuration and \({\mathbf{g}}_{i}\) in the present configuration are given by

$$ \begin{aligned} &{\mathbf{G}}_{\alpha }= \frac{{\partial }{\mathbf{X}}^{*}}{{\partial }\theta ^{\alpha }} = { \mathbf{D}}_{\alpha }, &\quad& {\mathbf{G}}_{3} = \frac{{\partial }{\mathbf{X}}^{*}}{{\partial }S} = {\mathbf{D}}_{3} + \theta ^{\alpha } \frac{d {\mathbf{D}}_{\alpha }}{d S} , \\ &{\mathbf{g}}_{\alpha }= \frac{{\partial }{\mathbf{x}}^{*}}{{\partial }\theta ^{\alpha }} = { \mathbf{d}}_{\alpha } , &\quad& {\mathbf{g}}_{3} = \frac{{\partial }{\mathbf{x}}^{*}}{{\partial }S} = { \mathbf{d}}_{3} + \theta ^{\alpha }\frac{{\partial }{\mathbf{d}}_{\alpha }}{{\partial }S} . \end{aligned} $$
(44)

Then, using the definitions (7) the three-dimensional deformation gradient \({\mathbf{F}}^{*}\) is given by

$$ \begin{aligned} &{\mathbf{F}}^{*} = { \mathbf{g}}_{i} \otimes {\mathbf{G}}^{i} = { \mathbf{F}} \biggl[{\mathbf{D}}_{\alpha }\otimes {\mathbf{G}}^{\alpha }+ \biggl({ \mathbf{D}}_{3} + \theta ^{\alpha } \frac{d {\mathbf{D}}_{\alpha }}{d S} + \theta ^{\alpha }{\boldsymbol{\beta }}_{\alpha }\biggr) \otimes {\mathbf{G}}^{3}\biggr] , \\ &{\mathbf{F}}^{*} = {\mathbf{F}}\bigl({\mathbf{G}}_{i} \otimes { \mathbf{G}}^{i} + \theta ^{\alpha }{\boldsymbol{\beta }}_{\alpha }\otimes {\mathbf{G}}^{3}\bigr) = {\mathbf{F}} \bigl({\mathbf{I}}+ \theta ^{\alpha }{\boldsymbol{\beta }}_{\alpha } \otimes {\mathbf{G}}^{3}\bigr) , \end{aligned} $$
(45)

where \({\mathbf{G}}^{i}\) are the reciprocals of \({\mathbf{G}}_{i}\). This result shows that when the inhomogeneous deformation vectors \({\boldsymbol{\beta }}_{\alpha }\) vanish, \({\mathbf{F}}^{*}\) is independent of the coordinates through the rod’s cross-section.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rubin, M.B. Equivalence of a Constrained Cosserat Theory and Antman’s Special Cosserat Theory of a Rod. J Elast 140, 39–47 (2020). https://doi.org/10.1007/s10659-019-09761-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-019-09761-9

Keywords

Mathematics Subject Classification (2010)

Navigation