Skip to main content
Log in

Closed-Form Saint-Venant Solutions in the Koiter Theory of Shells

  • Classroom Note
  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

In this paper we investigate the deformation of cylindrical linearly elastic shells using the Koiter model. We formulate and solve the relaxed Saint-Venant’s problem for thin cylindrical tubes made of isotropic and homogeneous elastic materials. To this aim, we adapt a method established previously in the three-dimensional theory of elasticity. We present a general solution procedure to determine closed-form solutions for the extension, bending, torsion and flexure problems. We remark the analogy and formal resemblance of these solutions to the classical Saint-Venant’s solutions for solid cylinders. The special case of circular cylindrical shells is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Altenbach, H., Zhilin, P.: A general theory of elastic simple shells. Usp. Mekh. 11, 107–148 (1988) (in Russian)

    MathSciNet  Google Scholar 

  2. Altenbach, H., Zhilin, P.: The theory of simple elastic shells. In: Kienzler, R., Altenbach, H., Ott, I. (eds.) Theories of Plates and Shells. Critical Review and New Applications, Euromech Colloquium, vol. 444, pp. 1–12. Springer, Heidelberg (2004)

    Google Scholar 

  3. Berdichevsky, V., Armanios, E., Badir, A.: Theory of anisotropic thin-walled closed-cross-section beams. Comput. Eng. 2, 411–432 (1992)

    Google Scholar 

  4. Berdichevsky, V., Misyura, V.: Effect of accuracy loss in classical shell theory. J. Appl. Mech. 59, S217–S223 (1992)

    Article  Google Scholar 

  5. Bîrsan, M.: The solution of Saint-Venant’s problem in the theory of Cosserat shells. J. Elast. 74, 185–214 (2004)

    Article  MathSciNet  Google Scholar 

  6. Bîrsan, M.: On Saint-Venant’s problem for anisotropic, inhomogeneous, cylindrical Cosserat elastic shells. Int. J. Eng. Sci. 47, 21–38 (2009)

    Article  MathSciNet  Google Scholar 

  7. Bîrsan, M.: Thermal stresses in cylindrical Cosserat elastic shells. Eur. J. Mech. A, Solids 28, 94–101 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  8. Bîrsan, M., Altenbach, H.: Analysis of the deformation of multi-layered orthotropic cylindrical elastic shells using the direct approach. In: Altenbach, H., Eremeyev, V. (eds.) Shell-Like Structures: Non-classical Theories and Applications, pp. 29–52. Springer, Berlin (2011)

    Chapter  Google Scholar 

  9. Bîrsan, M., Sadowski, T., Pietras, D.: Thermoelastic deformations of cylindrical multi-layered shells using a direct approach. J. Therm. Stresses 36, 749–789 (2013)

    Article  Google Scholar 

  10. Ciarlet, P.: Mathematical Elasticity, Vol. III: Theory of Shells. North-Holland, Amsterdam (2000)

    MATH  Google Scholar 

  11. Ciarlet, P.: An Introduction to Differential Geometry with Applications to Elasticity. Springer, Dordrecht (2005)

    MATH  Google Scholar 

  12. Goldenveizer, A.: Theory of Elastic Thin Shells. Pergamon Press, New York (1961)

    Google Scholar 

  13. Ieşan, D.: On Saint-Venant’s problem. Arch. Ration. Mech. Anal. 91, 363–373 (1986)

    Article  MathSciNet  Google Scholar 

  14. Ieşan, D.: Saint-Venant’s Problem. Lecture Notes in Mathematics, vol. 1279. Springer, New York (1987)

    Book  Google Scholar 

  15. John, F.: Estimates for the derivatives of the stresses in a thin shell and interior shell equations. Commun. Pure Appl. Math. 18, 235–267 (1965)

    Article  MathSciNet  Google Scholar 

  16. Koiter, W.: A consistent first approximation in the general theory of thin elastic shells. In: Koiter, W. (ed.) The Theory of Thin Elastic Shells, IUTAM Symposium Delft 1960, pp. 12–33. North-Holland, Amsterdam (1960)

    Google Scholar 

  17. Koiter, W.: On the foundations of the linear theory of thin elastic shells. Proc. K. Ned. Akad. Wet., Ser. B 73, 169–195 (1970)

    MathSciNet  MATH  Google Scholar 

  18. Koiter, W.: On the mathematical foundation of shell theory. In: Proc. Int. Congr. Math. Nice, vol. 3, pp. 123–130. Gauthier-Villars, Paris (1970). 1971

    Google Scholar 

  19. Koiter, W., Simmonds, J.: Foundations of shell theory. In: Becker, E. (ed.) Theoretical and Applied Mechanics, Proc. 13th Int. Congr. Theor. Appl. Mech., Moscow 1972, pp. 150–176. Springer, Heidelberg (1973).

    Chapter  Google Scholar 

  20. Ladevèze, P.: Justification de la théorie linéaire des coques élastiques. J. Méc. 15, 813–856 (1976)

    MATH  Google Scholar 

  21. Ladevèze, P., Sanchez, P., Simmonds, J.: Beamlike (Saint-Venant) solutions for fully anisotropic elastic tubes of arbitrary cross section. Int. J. Solids Struct. 41, 1925–1944 (2004)

    Article  Google Scholar 

  22. Love, A.: A Treatise on the Mathematical Theory of Elasticity. Dover, New York (1944)

    MATH  Google Scholar 

  23. Lurie, A.: Statics of Thin-Walled Elastic Shells. Gostekhizdat, Moscow - Leningrad (1947) (in Russian)

    Google Scholar 

  24. Morgenstern, D.: Mathematische Begründung der Scheibentheorie (zweidimensionale Elastizitätstheorie). Arch. Ration. Mech. Anal. 3, 91–96 (1959)

    Article  Google Scholar 

  25. Novozhilov, V.: The Theory of Thin Shells. Noordhoff, Groningen (1959)

    MATH  Google Scholar 

  26. Reissner, E.: On torsion of thin cylindrical shells. J. Mech. Phys. Solids 7, 157–162 (1959)

    Article  ADS  MathSciNet  Google Scholar 

  27. Reissner, E., Tsai, W.: Pure bending, stretching, and twisting of anisotropic cylindrical shells. J. Appl. Mech. 39, 148–154 (1972)

    Article  ADS  Google Scholar 

  28. de Saint-Venant, B.: Mémoire sur le calcul des pièces solides à simple ou à double courbure, et prenant simultanément en considération les divers efforts auxquelles elles peuvent être soumises dans tous les sens. C. R. Acad. Sci. Paris 17, 942–954 (1843), 1020–1031

    Google Scholar 

  29. Sokolnikoff, I.: Mathematical Theory of Elasticity. McGraw-Hill, New York (1956)

    MATH  Google Scholar 

  30. Steigmann, D.: Koiter’s shell theory from the perspective of three-dimensional nonlinear elasticity. J. Elast. 111, 91–107 (2013)

    Article  MathSciNet  Google Scholar 

  31. Timoshenko, S., Goodier, J.: Theory of Elasticity. McGraw-Hill, New York (1951)

    MATH  Google Scholar 

  32. Ventsel, E., Krauthammer, T.: Thin Plates and Shells: Theory, Analysis, and Applications. Taylor & Francis, New York (2001)

    Book  Google Scholar 

  33. Vlasov, V.: General Theory of Shells and Its Application in Engineering. Gostekhizdat, Moscow (1949) (in Russian)

    Google Scholar 

  34. Zhilin, P.: Mechanics of deformable directed surfaces. Int. J. Solids Struct. 12, 635–648 (1976)

    Article  MathSciNet  Google Scholar 

  35. Zhilin, P.: Applied Mechanics – Foundations of Shell Theory. State Polytechnical University Publisher, Sankt Petersburg (2006) (in Russian)

    Google Scholar 

Download references

Acknowledgements

This research has been funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation; project no. 415894848).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mircea Bîrsan.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bîrsan, M. Closed-Form Saint-Venant Solutions in the Koiter Theory of Shells. J Elast 140, 149–169 (2020). https://doi.org/10.1007/s10659-019-09760-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-019-09760-w

Mathematics Subject Classification

Keywords

Navigation