Skip to main content
Log in

The Complementing and Agmon’s Conditions in Finite Elasticity, Three Dimensions

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

We consider the complementing condition and Agmon’s condition for linearized elasticity in three-dimensions. With an elasticity tensor \(\mathsf{C}\) derived from a compressible, isotropic stored energy \(W\), linearized about a homogeneous deformation \(\mathbf{f}_{0}\), we apply the complementing and Agmon’s conditions to a traction portion of the surface of a body with unit normal \(\mathbf{n}\). We examine three problems including a general and a neo-Hookean \(W\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agmon, S.: The coerciveness problem for integro-differential forms. J. Anal. Math. 6, 183–223 (1958)

    Article  MathSciNet  Google Scholar 

  2. Agmon, S.: On the eigenfunctions and on the eigenvalues of general elliptic boundary value problems. Commun. Pure Appl. Math. 15, 119–147 (1962)

    Article  MathSciNet  Google Scholar 

  3. Agmon, S., Douglis, A., Nirenberg, L.: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. II. Commun. Pure Appl. Math. 17, 35–92 (1964)

    Article  MathSciNet  Google Scholar 

  4. Ball, J.M., Marsden, J.E.: Quasiconvexity at the boundary, positivity of the second variation and elastic stability. Arch. Ration. Mech. Anal. 86, 251–277 (1984)

    Article  MathSciNet  Google Scholar 

  5. Ciarlet, P.G.: Mathematical Elasicity. Vol. I. North-Holland, Amsterdam (1988)

    Google Scholar 

  6. de Figueiredo, D.G.: The coerciveness problem for forms over vector valued functions. Commun. Pure Appl. Math. 16, 63–94 (1963)

    Article  MathSciNet  Google Scholar 

  7. Fichera, G.: Existence theorems in elasticity. In: Handbuch der Physik, vol. VIa/2. Springer, New York (1972)

    Google Scholar 

  8. Friedman, A.: Partial Differential Equations. Holt, Rinehart, and Winston, New York (1969)

    MATH  Google Scholar 

  9. Gurtin, M.E.: An Introduction to Continuum Mechanics. Academic Press, San Diego (1981)

    MATH  Google Scholar 

  10. Knowles, J.K., Sternberg, E.: On the failure of ellipticity of the equations for finite elastostatic plane strain. Arch. Ration. Mech. Anal. 63, 321–336 (1977)

    Article  MathSciNet  Google Scholar 

  11. Lions, J.L., Magenes, E.: Non-Homogeneous Boundary Value Problems and Applications. I. Springer, Berlin (1972)

    Book  Google Scholar 

  12. MacSithigh, G.P.: Necessary conditions at the boundary for minimizers in incompressible finite elasticity. J. Elast. 81, 217–269 (2005)

    Article  MathSciNet  Google Scholar 

  13. MacSithigh, G.P.: Agmon’s condition for incompressible elasticity: a formulation of Mielke-Sprenger type. Z. Angew. Math. Phys. 58, 679–696 (2007)

    Article  MathSciNet  Google Scholar 

  14. MacSithigh, G.P.: Fully explicit Agmon’s condition for general states of a special incompressible elastic material. Int. J. Non-Linear Mech. 42, 369–375 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  15. Mielke, A., Sprenger, P.: Quasiconvexity at the boundary and a simple variational formulation of Agmon’s condition. J. Elast. 51, 23–41 (1998)

    Article  MathSciNet  Google Scholar 

  16. Morrey, C.B.: Multiple Integrals in the Calculus of Variations. Springer, Berlin (1966)

    Book  Google Scholar 

  17. Negron-Marrero, P.V., Montes-Pizarro, E.: Axisymmetric deformations of buckling and barrelling type for cylinders under lateral compression—the linear problem. J. Elast. 65, 61–86 (2001)

    Article  MathSciNet  Google Scholar 

  18. Negron-Marrero, P.V., Montes-Pizarro, E.: Violation of the complementing condition and local bifurcation in nonlinear elasticity. J. Elast. 107, 151–178 (2012)

    Article  MathSciNet  Google Scholar 

  19. Ramanan, L.: The complementing condition in elasticity. Masters’ thesis, University of Tennessee (2014)

  20. Schechter, M.: General boundary value problems for elliptic partial differential equations. Commun. Pure Appl. Math. 12, 457–486 (1959)

    Article  MathSciNet  Google Scholar 

  21. Simpson, H.C.: The complementing and Agmon’s conditions in finite elasticity. J. Elasticity., to appear

  22. Simpson, H.C., Spector, S.J.: On barrelling instabilities in finite elasticity. J. Elast. 14, 103–125 (1984)

    Article  MathSciNet  Google Scholar 

  23. Simpson, H.C., Spector, S.J.: On the positivity of the second variation in finite elasticity. Arch. Ration. Mech. Anal. 98, 1–30 (1987)

    Article  MathSciNet  Google Scholar 

  24. Simpson, H.C., Spector, S.J.: Necessary conditions at the boundary for minimizers in finite elasticity. Arch. Ration. Mech. Anal. 107, 105–125 (1989)

    Article  MathSciNet  Google Scholar 

  25. Simpson, H.C., Spector, S.J.: On bifurcation in finite elasticity: buckling of a rectangular rod. J. Elast. 92, 277–326 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

The author thanks E.L. Montes-Pizarro and P.V. Negron-Marrero for their helpful comments and discussion relating to this paper.

Author information

Authors and Affiliations

Authors

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

We summarize the calculations in Sect. 3.1. As in the paragraph following (3.16), the set \(S_{\alpha } = \mathrm{span} \{\mathbf{z} _{\alpha }^{(1)}, \mathbf{z}_{\alpha }^{(2)},\mathbf{z}_{\alpha }^{(3)} \}\) of bounded solutions of (2.12a) is given in three cases analogous to Simpson [21], Theorem 4.3 (or following (4.38) in Sect. 4.2 there). In each case we let z α ( 1 ) = e r 1 t [ 1 0 0 ] , \(r_{1} = - \sqrt{\frac{\beta _{3\alpha }}{\beta _{1}}}\). Then

Case 1.\(\kappa _{1} \ne 0\), \(r_{2} \ne r_{3}\).

$$ \mathbf{a}^{(i)} = \left [ \textstyle\begin{array}{c} 0 \\ -\kappa _{1} r_{i} \\ i(\beta _{1} r_{i}^{2} - \tau _{1\alpha }) \end{array}\displaystyle \right ], \quad \mathbf{z}^{(i)}(t) = e^{r_{i} t} \mathbf{a}^{(i)}, \ i = 2,3. $$

Case 2.\(\kappa _{1} = 0\), \(r_{2}^{2} = \frac{\tau _{1\alpha }}{ \beta _{1}}\), \(r_{3}^{2} = \frac{\beta _{1\alpha }}{\tau _{3}}\).

$$ \mathbf{a}^{(2)} = \left [ \textstyle\begin{array}{c} 0 \\ 1 \\ 0 \end{array}\displaystyle \right ], \qquad \mathbf{a}^{(3)} = \left [ \textstyle\begin{array}{c} 0 \\ 0 \\ 1 \end{array}\displaystyle \right ], \quad \mathbf{z}^{(i)}(t) \mbox{ as in Case 1}, \ i = 2,3. $$

Case 3.\(\kappa \ne 0\), \(r_{2} = r_{3}\). Defining

$$ \mathbf{a}_{\alpha }(r) = \left [ \textstyle\begin{array}{c} 0 \\ -\kappa _{1} r \\ i(\beta _{1} r^{2} - \tau _{1\alpha }) \end{array}\displaystyle \right ], \quad \mbox{then} \ \mathbf{z}^{(2)}(t) = e^{r_{2} t} \mathbf{a} _{\alpha }(r_{2}), \ \mathbf{z}^{(3)}(t) = \left . \frac{\partial }{ \partial r}\bigl[e^{r t} \mathbf{a}_{\alpha }(r) \bigr] \right \vert _{r=r_{2}}. $$

(in fact, \([A(r_{i}) - \alpha I]\mathbf{a}^{(i)} = \mathbf{0}\) in Cases 1, 2 and in Case 3, [A(r)αI] a α (r)=i( β 1 τ 3 r 4 λ α r 2 + β 1 α τ 1 α ) [ 0 0 1 ] =i β 1 τ 3 ( r 2 r 2 2 ) 2 [ 0 0 1 ] so the proof in Simpson [21], Theorem 4.3 applies).

Using these solutions we obtain \(C_{\xi ,\alpha }^{(2)}\) in (3.17) in the three cases. With \(p_{\alpha }^{(1)}(r) = \alpha _{1} \beta _{1} r ^{2} + \nu _{1} \tau _{1\alpha }\), \(p_{\alpha }^{(2)}(r) = i [(\tau _{3} \tau _{1\alpha } - \alpha _{1} \kappa _{1}) r - \beta _{1} \tau _{3} r^{3}]\)

Case 1. C ξ , α ( 2 ) = [ p α ( 1 ) ( r 2 ) p α ( 1 ) ( r 3 ) p α ( 2 ) ( r 2 ) p α ( 2 ) ( r 3 ) ] ,

Case 2. C ξ , α ( 2 ) = [ β 1 r 2 i ν 1 i α 1 τ 3 r 3 ] ,

Case 3. C ξ , α ( 2 ) = [ p α ( 1 ) ( r 2 ) d p α ( 1 ) d r ( r 2 ) p α ( 2 ) ( r 2 ) d p α ( 2 ) d r ( r 2 ) ] .

We used (2.19), (3.13), (3.14) and \(\mathcal{B}_{\xi }[\mathbf{z}^{(i)}] = B(r_{i})\mathbf{a}^{(i)}\) in Cases 1, 2 and the reasoning following Simpson [21], (4.42) in Case 3.

Finally we evaluate \(\det C_{\xi ,\alpha }^{(2)}\). Note \(\hat{A}_{ \alpha }\) in (3.18).

$$\begin{aligned} \textbf{Case\ 1.} \quad & \det C_{\xi ,\alpha }^{(2)} = -i \kappa _{1} \sqrt{\frac{ \tau _{1\alpha }}{\tau _{3}}} \hat{A}_{\alpha } (r_{3} - r_{2}), \end{aligned}$$
(A.1)
$$\begin{aligned} \textbf{Case\ 2.} \quad & \det C_{\xi ,\alpha }^{(2)} = (\sqrt{\beta _{1} \beta _{1\alpha }} + \sqrt{\tau _{3} \tau _{1\alpha }})^{-1} \hat{A}_{\alpha }, \end{aligned}$$
(A.2)
$$\begin{aligned} \textbf{Case\ 3.} \quad &\det C_{\xi ,\alpha }^{(2)} = -i \kappa _{1} \sqrt{\frac{ \tau _{1\alpha }}{\tau _{3}}} \hat{A}_{\alpha }. \end{aligned}$$
(A.3)

In fact, in Case 1 we have

$$\begin{aligned} \det C_{\xi ,\alpha }^{(2)} &= -i \bigl\{ \alpha _{1} \tau _{3} \beta _{1}^{2} r_{2}^{2} r_{3}^{2} + \tau _{3} \tau _{1\alpha } \nu _{1} \beta _{1} \bigl(r _{2}^{2} + r_{3}^{2} \bigr) + (- \alpha _{1} \beta _{1} \delta _{\alpha } + \tau _{3} \tau _{1\alpha } \nu _{1} \beta _{1})r_{2} r_{3} + \nu _{1} \tau _{1\alpha } \delta _{\alpha } \bigr\} \\ &\quad\times{} (r_{3} - r_{2}) \end{aligned}$$
(A.4)

where \(\delta _{\alpha } = \alpha _{1} \kappa _{1} - \tau _{3} \tau _{1 \alpha }\). From (3.16) we have

$$ r_{2}^{2} + r_{3}^{2} = \frac{\lambda _{\alpha }}{\beta _{1} \tau _{3}}, \qquad r_{2}^{2} r_{3}^{2} = \frac{\beta _{1\alpha } \tau _{1\alpha }}{\beta _{1} \tau _{3}}, \qquad r_{2} r_{3} = \sqrt{ \frac{\beta _{1\alpha } \tau _{1\alpha }}{\beta _{1} \tau _{3}}} $$
(A.5)

and substituting these into (A.4) yields (A.1). In Case 2 we get \(\det C_{\xi ,\alpha }^{(2)} = \sqrt{\beta _{1} \beta _{1\alpha } \tau _{3} \tau _{1\alpha }} - \alpha _{1}^{2}\) using \(0 = \kappa _{1} = \alpha _{1} + \nu _{1}\). This equals the right side of (A.2). In Case 3, \(\det C_{\xi ,\alpha }^{(2)} = \frac{d}{dr} \Delta (r) \vert_{r = r_{2}}\) where

$$ \Delta (r) = \det \left [ \textstyle\begin{array}{c@{\quad }c} p_{\alpha }^{(1)}(r_{2}) & p_{\alpha }^{(1)}(r) \\ p_{\alpha }^{(2)}(r_{2}) & p_{\alpha }^{(2)}(r) \end{array}\displaystyle \right ]. $$

But \(\Delta (r)\) equals the right side of (A.4) with \(r_{3}\) replaced \(r\). Thus \(\frac{d}{dr} \Delta (r_{2})\) equals the right side of (A.4) with the factor \((r_{3} - r_{2})\) deleted. Then using (A.5) yields (A.3).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simpson, H.C. The Complementing and Agmon’s Conditions in Finite Elasticity, Three Dimensions. J Elast 140, 1–37 (2020). https://doi.org/10.1007/s10659-019-09756-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-019-09756-6

Keywords

Mathematics Subject Classification (2010)

Navigation