Skip to main content
Log in

Von Neumann Entropy Distribution with Influence Factors in Matrix Product States

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Different kinds of description and measure of multispin quantum correlation (MSQC) and the corresponding influence factors investigation not only advance the understanding of MSQC organization and structure, but also concern different kinds of specific potential applications with the superiorities compared to the corresponding classical ones. The previous conventional condensed matter theory approach researches all focused on some existing kinds of MSQC description and measure on the concrete interaction-model parameters based on a few ground-state solvable models. Here by using Matrix Product States (MPSs), we not only investigate the MSQC varying with the concrete interaction model parameters, but also investigate other influence factors including the total spin number (TSN) and the characteristic parameters of the MSQC concrete description and measure, starting with Von Neumann Entropy (VNE) distribution with influence factors. The long-wavelength VNE behavior is also investigated and analyzed. We then further study their physical mechanisms, especially for long-range MSQC beyond our previous cognition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Haldane, F. D. M.: . Phys. Rev. B 25, 4925 (1982)

    ADS  Google Scholar 

  2. Haldane, F. D. M.: . Phys. Lett. A 93, 464 (1983)

    ADS  MathSciNet  Google Scholar 

  3. Haldane, F. D. M.: . Phys. Rev. Lett. 50, 1153 (1983)

    ADS  MathSciNet  Google Scholar 

  4. Imamoglu, A, Awschalom, D D, Burkard, G, et al.: . Phys. Rev. Lett. 83(20), 4204 (1999)

    ADS  Google Scholar 

  5. Zheng, S B, Guo, G. C.: . Phys. Rev. Lett. 85(11), 2000 (2392)

    Google Scholar 

  6. Christandl, M, Datta, N, Ekert, A , et al. : . Phys. Rev. Lett. 92(18), 187902 (2004)

    ADS  Google Scholar 

  7. Vestraete, F, Martin-Delgado, MA, Cirac, JI: . Phys. Rev. Lett. 92, 087201 (2004)

    ADS  Google Scholar 

  8. Grigorenko, I A, Khveshchenko, DV: . Phys. Rev. Lett. 95(8), 110501 (2005)

    ADS  Google Scholar 

  9. Fan, H, Roychowdhury, V, Szkopek, T.: . Phys. Rev. A 72 (11), 052323 (2005)

    ADS  Google Scholar 

  10. Barjaktarevic, J P, McKenzie, R H, Links, J, et al.: . Phys. Rev. Lett. 95(12), 230501 (2005)

    ADS  Google Scholar 

  11. Murao, M, Jonathan, D, Plenio, M B, et al.: . Phys. Rev. A 59(1), 156 (1999)

    ADS  Google Scholar 

  12. Liu, D, Zhao, X, Long, GL: . arXiv:quant-ph/07053904(2007)

  13. Rulli, C. C., Sarandy, M. S.: . Phys. Rev. A 84, 042109 (2011)

    ADS  Google Scholar 

  14. Okrasa, M., Walczak, Z.: . Europhys. Lett. 96, 60003 (2011)

    ADS  Google Scholar 

  15. Giorgi, G. L., Bellomo, B., Galve, F., Zambrini, R.: . Phys. Rev. Lett. 107, 190501 (2011)

    ADS  Google Scholar 

  16. Chakrabarty, I., Agrawal, P., Pati, A. K.: The European physical journal d-atomic, molecular. Opt. Plasma Phys. 65, 605 (2011)

    Google Scholar 

  17. Modi, K., Paterek, T., Son, W., Vedral, V., Williamson, M.: . Phys. Rev. Lett. 104, 080501 (2010)

    ADS  MathSciNet  Google Scholar 

  18. Modi, K., Brodutch, A., Cable, H., Paterek, T., Vedral, V.: . Rev. Mod. Phys. 84, 1655 (2012)

    ADS  Google Scholar 

  19. Hu, M. -L., Hu, X., Wang, J., Peng, Y., Zhang, Y. -R., Fan, H.: . Phys. Rep. 762, 1 (2018)

    ADS  MathSciNet  Google Scholar 

  20. Bera, A., Das, T., Sadhukhan, D., Roy, S. S., De, A. S., Sen, U.: . Rep. Prog. Phys. 81, 024001 (2017)

    ADS  Google Scholar 

  21. Radhakrishnan, C, Lauriere, M, Byrnes, T: . arXiv:1909.081943

  22. Affleck, I, Kennedy, T, Lieb, E H, Tasaki, H: . Commun. Math. Phys. 115, 477 (1988)

    ADS  Google Scholar 

  23. Klümper, A, Schadschneider, A, Zittartz, J: . J. Phys. A 24, L955 (1991)

    ADS  Google Scholar 

  24. Klümper, A, Schadschneider, A, Zittartz, J: . Z. Phys. B 87, 281 (1992)

    ADS  Google Scholar 

  25. Fannes, M, Nachtergaele, B, Werner, R F: . Commun. Math. Phys. 144, 443 (1992)

    ADS  Google Scholar 

  26. Verstraete, F, Porras, D, Cirac, J I: . Phys. Rev. Lett. 93, 227205 (2004)

    ADS  Google Scholar 

  27. Verstraete, F, Garcia-Ripoll, J J, Cirac, J I: . Phys. Rev. Lett. 93, 207204 (2004)

    ADS  Google Scholar 

  28. Verstraete, F, Cirac, JI: arXiv:cond-mat/0505140; Osborne, T.J. arXiv:quant-ph/0508031; Hastings M.B. arXiv:cond-mat/0508554

  29. Zwolak, M, Vidal, G: . Phys. Rev. Lett. 93, 207205 (2004)

    ADS  Google Scholar 

  30. Vidal, G: . Phys. Rev. Lett. 93, 040502 (2020)

    Google Scholar 

  31. Garcia, D P, Verstraete, F, Wolf, M M, Cirac, J I: . Quantum Inf. Comput. 7, 401 (2007)

    MathSciNet  Google Scholar 

  32. Asoudeh, M, Karimipour, V, Sadrelashrafi, A: . Phys. Rev. B 75, 224427 (2007)

    ADS  Google Scholar 

  33. Alipour, S, Karimipour, V, Memarzadeh, L: . Phys. Rev. A 75, 052322 (2007)

    ADS  Google Scholar 

  34. Cozzini, M., Ionicioiu, R., Zanardi, P.: . Phys. Rev. B 76, 104420 (2007)

    ADS  Google Scholar 

  35. Zhu, J M: . Chin. Phys. C 36(4), 294–298 (2012)

    Google Scholar 

  36. Zhu, J M: . Commun. Theor. Phys. 64(3), 356–360 (2015)

    ADS  MathSciNet  Google Scholar 

  37. Zhu, JM, He, QK: . Phys. B 531(2), 114–122 (2018)

    ADS  MathSciNet  Google Scholar 

  38. Zhu, JM: . In. J. Theor. Phys. 55(9), 4157–4175 (2016)

    Google Scholar 

  39. Zhu, JM: . Commun. Theor. Phys. 54(2), 373–379 (2010)

    ADS  Google Scholar 

  40. Cang, CW, Dan, L, Feng, P, et al.: . Sci. China Ser. G-Phy. Mech. Astronom. 49(5), 606 (2006)

    ADS  Google Scholar 

  41. Liu, D, Zhao, X, Long, G L: . Commun. Theor. Phys. 54, 825 (2010)

    ADS  Google Scholar 

  42. Liu, D, Zhao, X, Long, G L: . Commun. Theor. Phys. 49, 329 (2008)

    ADS  Google Scholar 

  43. Wu, H, Zhao, X, Li, Y S: . Int. J. Quantum Inform. 8, 1169 (2010)

    Google Scholar 

  44. Muralidharan, S, Panigrahi, P K: . Phys. Rev. A 77, 032321 (2008)

    ADS  Google Scholar 

  45. Muralidharan, S, Panigrahi, P K: . Phys. Rev. A 78, 062333 (2008)

    ADS  Google Scholar 

  46. Verstraete, F, Cirac, J I, Latorre, J I, Rico, E, Wolf, M M: . Phys. Rev. Lett. 94, 140601 (2005)

    ADS  Google Scholar 

  47. Chen, X, Gu, Z-C, Wen, X-G: . Phys. Rev. B 82, 155138 (2010)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing-Min Zhu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, JM. Von Neumann Entropy Distribution with Influence Factors in Matrix Product States. Int J Theor Phys 59, 2494–2508 (2020). https://doi.org/10.1007/s10773-020-04517-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-020-04517-x

Keywords

Navigation