Skip to main content

Advertisement

Log in

The early Paleozoic cumulate gabbroic rocks from the southwest part of the Tisza Mega-Unit (Mt. Papuk, NE Croatia): evidence of a Gondwana suture zone

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The Mt. Papuk heteroadcumulate pyroxene–amphibole gabbronorites, which outcrops at the southern margin of the Tisza Mega-Unit, is suggested to stem from the deep oceanic crust formed by the in situ crystallisation in a supposed magma chamber. Amphibole oikocrystals are found to define a poikilitic texture of analysed rocks. A common enclosure in amphibole is the cumulus orthopyroxene, and rarely, the clinopyroxene and/or plagioclase and spinel. The chemical composition of related minerals and their crystallisation sequence suggest the sub-solidus crystallisation of gabbronorite in an open system at high temperatures and medium pressures. Parental magmas originated from the moderately depleted mantle source, which was metasomatised prior to melting. Early mineral fractionation gave rise to the assemblage consisted of spinel, pyroxene, plagioclase and intercumulus amphibole. The rocks’ bulk chemistry, mineral crystallisation sequence, pyroxene geochemistry and myriad of high Ca-plagioclase, which coexists with igneous Ca-amphibole are all in favour of the strong subduction influence typical for mafic intrusion formed above mantle wedge in the root of an island arc at depths of 10–21 km. Herein presented geochemical and isotopic data (40Ar–39Ar: 487.1 ± 4.3 Ma and Sm–Nd: 505 Ma) go along with the existence of an intra-oceanic arc related to geodynamic events that took place in the Prototethyan oceanic realm s.l. during middle Cambrian to earliest Ordovician. These events were likely correlated with the subduction of the Quaidam(?) back-arc ocean, or alternatively, with the subduction and closure of Prototethyan branches located between microcontinental fragments of Asia. Initially, the closure of back-arc oceans led to crust fragmentation and, then, addition of non-metamorphosed mafites into the obducted sequence further from the active continental margins of Gondwana and Laurassia at the time of the formation of Pangea in the late Palaeozoic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

(modified after Stampfli et al. 2013)

Similar content being viewed by others

References

  • Antić M, Peytcheva I, von Quadt A, Kounov A, Trivić B, Serafimovski T, Tasev G, Gerdjikov I, Wetzel A (2016) Pre-Alpine evolution of a segment of the North-Gondwanan margin: geochronological and geochemical evidence from the central Serbo-Macedonian Massif. Gondwana Res 36:523–544

    Google Scholar 

  • Ao SJ, Xiao WJ, Han CM, Li XH, Qu JF, Zhang JE, Guo QQ, Tian ZH (2012) Cambrian to early Silurian ophiolite and accretionary processes in the Beishan collage, NW China: implications for the architecture of the Southern Altaids. Geol Mag 149:606–625

    Google Scholar 

  • Arculus RJ, Powell R (1986) Source component mixing in the regions of arc magma generation. J Geophys Res 91:5913–5926

    Google Scholar 

  • Arculus RJ, Wills KJA (1980) The petrology of plutonic blocks and inclusions from the Lesser Antilles island arc. J Petrol 21:743–799

    Google Scholar 

  • Arenas R, Martínez Catalán JR, Sánchez Martínez S, Díaz García F, Abati J, Fernández-Suárez J, Andonaegui P, Gómez-Barreiro J (2007) Paleozoic ophiolites in the Variscan suture of Galicia (northwest Spain): Distribution, characteristics, and meaning, In: Hatcher RD, Carlson MP, McBride JH, Martínez Catalán JR (eds) 4-D Framework of Continental Crust: Geol Soc Am Mem 200:425–444

  • Árkai P, Bérczi-Makk A, Balogh K (2000) Alpine low-T prograde metamorphism in the post-Variscan basement of the Great Plain, Tisza Unit (Pannonian Basin, Hungary). Acta Geol Hung 43:43–63

    Google Scholar 

  • Balen D, Horváth P, Tomljenović T, Finger F, Humer B, Pamić J, Árkai P (2006) A record of pre-Variscan Barrovian regional meta-morphism in the eastern part of the Slavonian Mountains (NE Cro-atia). Minist Petrol 87:143–162

    Google Scholar 

  • Balen D, Horváth P, Finger F, Starijaš B (2013) Phase equilibrium, geothermobarometric and xenotime age dating constraints on the Alpine metamorphism recorded in chloritoid schists from the southern part of the Tisia Mega-Unit (Slavonian Mts., NE Croatia). Int J Earth Sci 102:1091–1109

    Google Scholar 

  • Balen D, Massonne HJ, Petrinec Z (2015) Collision-related Early Paleozoic evolution of a crustal fragment from the northern Gondwana margin (Slavonian Mountains, Tisia Mega-Unit, Croatia): reconstruction of the P-T path, timing and paleotectonic implications. Lithos 232:211–228

    Google Scholar 

  • Balen D, Massonne HJ, Lihter I (2018) Alpine metamorphism of low-grade schists from the Slavonian Mountains (Croatia): new P-T and geochronological constraints. Int Geol Rev 60:288–304

    Google Scholar 

  • Balintoni I, Balica C (2013) Avalonian, Ganderian and East Cadomian terranes in South Carpathians, Romania, and Pan-African events recorded in their basement. Minist Petrol 107:709–725

    Google Scholar 

  • Balintoni I, Balica C, Ducea MN, Hann H-P (2014) Peri-Gondwanan terranes in the Romanian Carpathians: a review of their spatial distribution, origin, provenance, and evolution. Geosci Front 5:395–411

    Google Scholar 

  • Balla Z (1986) Analysis of the anti-clockwise rotation of the Mecsek Mountains (Southwest Hungary) in the Cretaceous: interpretation of paleomagnetic data in the light of the geology. Geophys Trans 32:147–181

    Google Scholar 

  • Barret TJ, Maclean WH (1997) Volcanic sequences, lithogeochemistry and hydrothermal alteration in some bimodal VMS system. In: Barrie CT, Hannington MD (eds) Volcanic-associated massive sulfide deposits: process and example in modern and ancient settings. Ottaw, Canada, pp 105–133

    Google Scholar 

  • Beard JS (1986) Characteristic mineralogy of arc-related cumulate gabbros: implications for the tectonic setting of gabbroic plutons and for andesite genesis. Geology 14:848–851

    Google Scholar 

  • Beard JS, Borgia A (1989) Temporal variation of mineralogy and petrology in cognate gabbroic enclaves at Arenal volcano, Costa Rica. Contrib Miner Petrol 103:110–122

    Google Scholar 

  • Berra F, Angiolini L (2014) The evolution of the Tethys region throughout the Phanerozoic: a brief tectonic reconstruction. In: Marlow L, Kendall C, Yose L (eds) Petroleum systems of the Tethyan region: AAPG Memoir 106, pp 1–27

  • Biermanns L (1996) Chemical classification of gabbroic-dioritic rocks, based on TiO2, SiO2, FeOtot, MgO, K2O, Y and Zr. En Symposium International sur la Géodynamique Andine, Third ISAG, Saint-Malo (France), 17–19 September, 1996, pp 547–550

  • Bleahu M, Mantea G, Bordea S, Panin S, Stephanescu M, Šikić K, Haas J, Kovács S, Cs Péró, Bérczi-Makk Á, Konrád GY, Nagy E, Rálisch-Felgenhauer E, Török Á (1996) Triassic facies types, evolutions and paleogeographic relations of Tisza Megaunit. Acta Geol Hung 37:187–234

    Google Scholar 

  • Bonev N, Ovtcharova-Schaltegger M, Moritz R, Marchev P, Ulianov A (2013) Peri-Gondwanan Ordovician crustal fragments in the high-grade basement of the Eastern Rhodope Massif, Bulgaria: evidence from U-Pb LA-ICP-MS zircon geochronology and geochemistry. Geodin Acta 26:207–229

    Google Scholar 

  • Bortolotti V, Chiari M, Marroni M, Pandolfi L, Principi G, Saccani E (2013) The geodynamic evolution of the ophiolites from Albania and Greece, Dinaric-Hellenic Belt: one, two, or more oceanic basins? Int J Earth Sci 102:783–811

    Google Scholar 

  • Bracciali L, Di Vincenzo G, Rocchi S, Ghezzo C (2009) The Tiger Gabbro from northern Victoria Land, Antarctica: the roots of an island arc within the early Palaeozoic margin of Gondwana. J Geol Soc 166:711–724

    Google Scholar 

  • Brown M (1977) The crossite content of Ca-amphiboles as a guide to pressure of metamorphism. J Petrol 18:53–72

    Google Scholar 

  • Burns LE (1985) The Border Ranges ultramafic and mafic complex, south central Alaska: cumulate fractionates of island arc volcanics. Can J Earth Sci 22:1020–1038

    Google Scholar 

  • Campbell IH (1978) Some problems with the cumulus theory. Lithos 11:311–323

    Google Scholar 

  • Campbell IH (1987) Distribution of orthocumulate textures in the imberlana Intrusion. J Geol 95:35–54

    Google Scholar 

  • Catalán JRM, Fernández-Suárez J, Jenner GA, Belousova E, Montes AD (2004) Provenance constraints from detrial zircon U-Pb ages in the NW Iberian Massif: implications for Palaeozoic plate configuration and Variscian evolution. J Geol Soc 161:463–476

    Google Scholar 

  • Cavargna-Sani M, Epard JL, Bussy F, Ulianov A (2014) Basement lithostratigraphy of the Adula Nappe: implications for Palaeozoic evolution and Alpine kinematics. Int J Earth Sci 113:61–82

    Google Scholar 

  • Claeson DT, Meurer WP (2004) Fractional crystallization of hydrous basaltic ‘‘arc-type’’ magmas and the formation of amphibole-bearing gabbroic cumulates. Contrib Miner Petrol 147:288–304

    Google Scholar 

  • Cohen KM, Finnely SC, Gibbard PL, Fan J-X (2013) The ICS International Chronostratigraphic Chart. Episodes 30:199–204 (2013; updates 2018)

    Google Scholar 

  • Colombi A (1989) Métamorphism et Géochimie des roches mafiques des Alpes Ouest-centrales (géoprofil Viège-Domodossola- Locerano). Mémoires de Géologie (Lausanne) 4:1–216

    Google Scholar 

  • Conrad WK, Kay RW (1984) Ultramafic and mafic inclusions from Adak Islands: crystallisation history, and implications for the nature of primary magmas and crustal evolution in the Aleutian arc. J Petrol 25:88–125

    Google Scholar 

  • Coogan LA (2003) Contaminating the lower crust in the Oman ophiolite. Geology 31:1065–1068

    Google Scholar 

  • Coogan LA, Wilson RN, Gillis KM, MacLeo CJ (2001) Near-solidus evolution of oceanic gabbros: insights from amphibole geochemistry. Geochim Cosmochim Acta 65:4339–4357

    Google Scholar 

  • Costa F, Dungan MA, Singer BS (2002) Hornblende- and Phlogopite-bearing gabbroic xenoliths from Volc´an San Pedro (36◦S), Chilean Andes: evidence for melt and fluid migration and reactions in subduction-related Plutons. J Petrol 43:219–241

    Google Scholar 

  • Cox KG, Bell JD, Pankhust RJ (1979) The interpretation of igneous rocks. Allen and Unwin, Crows Nest

    Google Scholar 

  • Croatian Geological Survey (2009) Geological map of the Republic of Croatia, scale: 1:300.000. Croatian Geological Survey, Zagreb

  • Csontos L, Vörös A (2004) Mesozoic plate tectonic reconstruction of the Carphatian region. Paleogeogr Paleoclimatol Paleoecol 210:1–56

    Google Scholar 

  • Dallmeyer RD, Pană DI, Neubauer F, Erdmer P (1999) Tectonothermal evolution of the Apuseni Mountains, Romania: resolution of Variscan versus Alpine events with 40Ar/39Ar ages. J Geol 107:329–352

    Google Scholar 

  • De Bari SM (1994) Petrogenesis of the Fiambal´a gabbroic intrusion, northwestern Argentina, a deep syntectonic pluton in a continental magmatic arc. J Petrol 35:679–713

    Google Scholar 

  • De Bari SM, Coleman RG (1989) Examination of the deep levels of an island arc: evidence from the Tonsina ultramaficmafic assemblage, Tonsina, Alaska. J Geophys Res 94:4373–4391

    Google Scholar 

  • Debret B, Svrjensky DA (2017) Higly oxidising fluids generated during serpentinite breakdown in subduction zones. Sci Rep-UK 7:1–7

    Google Scholar 

  • Deer WA, Howie RA, Zussman J (1992) An introduction to the rock forming minerals, 2nd edn. Harlow, Longman

    Google Scholar 

  • Domeier M (2018) Early Paleozoic tectonics of Asia: towards a full-plate model. Geosci Front 9:789–862

    Google Scholar 

  • Elthon D (1984) Plagioclase buoyancy in oceanic basalts: chemical effects. Geochim Cosmochim Acta 48:753–768

    Google Scholar 

  • Elthon D, Casey JF, Komaror S (1982) Mineral chemistry of ultramafic cumulates from the North Arm Mountain Massif of the Bay of Island ophiolite: evidence for high pressure crystal fractionation of oceanic basalts. J Geophys Res 87:8717–8734

    Google Scholar 

  • Ernst WG, Liu J (1998) Experimental phase-equilibrium study of Al- and Ti contents of calcic amphibole in MORB—a semiquantitative thermobarometer. Am Miner 83:952–969

    Google Scholar 

  • Frisch W, Neubauer F (1989) Pre-Alpine terranes and tectonic zoning in the eastern Alps. In: Dallmeyer RD (ed) Terranes in the circum-Atlantic Paleozoic orogens, vol 230. Geol Soc Am, Spec Publ, pp 91–114

  • Fu C, Yan Z, Wang Z, Buckman S, Aitchison JC, Niu M et al (2018) Lajishankou ophiolite complex: implications for Paleozoic multiple accretionary and collisional events in the South Qilian belt. Tectonics 37:1321–1346

    Google Scholar 

  • Furnes H, Safonova I (2019) Ophiolites of the Central Asian Orogenic Belt: geochemical and petrological characterization and tectonic settings. Geosci Front 10:1255–1284

    Google Scholar 

  • Géczy B (1973) The origin of the Jurassic faunal provinces and the Mediterranean plate tectonics. Ann Univ Sci Budapest Eötvös Nom Sect Geol 16:99–114

    Google Scholar 

  • Gillis KM (1996) Rare earth element constraints on the origin of amphibole in gabbroic rock from site 894, Hess Deep. In: Mevel C, Gillis KM, Allan JF, Meyer PS (eds) Ocean drilling program science research, vol 147, pp 59–75

  • Gillis KM, Meyer PS (2001) Metasomatism of oceanic gabbros by late stage melts and hydrothermal fluids: evidence from the rare earth element composition of amphiboles. Geochem Geophys Geosyst 2:1525–2027

    Google Scholar 

  • Girardeav J, Mevel C (1982) Amphibolitized sheared gabbros from ophiolites as indicators of the evolution of the oceanic crust: Bay of Island, Newfounland. Earth Planet Sci Lett 61:151–165

    Google Scholar 

  • Grove TL, Baker MB (1984) Phase equilibrium controls on the tholeiitic versus calc-alkaline differentiation trends. J Geophys Res 89:3253–3274

    Google Scholar 

  • Haas J, Péró CS (2004) Mesozoic evolution of the Tisza Mega-unit. Int J Earth Sci 93:297–313

    Google Scholar 

  • Harrison TM (1981) Diffusion of 40Ar in Hornblende. Contrib Miner Petrol 78:324–331

    Google Scholar 

  • Harrison TM, Fitzgerald JD (1986) Exsolution in hornblende and its consequences for 40Ar-39Ar age spectra and closure temperature. Geochim Cosmochim Acta 50:247–253

    Google Scholar 

  • Hawthorne FC, Oberti R, Harlow GE, Maresch WV, Martin RF, Schumacher JC, Welch MD (2012) Nomenclature of the amphibole supergroup. Am Miner 9:2031–2048

    Google Scholar 

  • Hebert R, Laurent R (1990) Mineral chemistry of the plutonic section of the Troodos Ophiolite: new constraints for genesis of arc-related ophiolites. In: Malpas J, Moores EM, Panayiotou A, Xenophontos C (eds) Ophiolites: oceanic crustal analogues, proceedings of the “Troodos 1987” symposium, geological survey of cyprus, Nicosia, Cyprus, pp 149–163

  • Helz RT (1973) Phase relations of basalt in their melting range at PH2O = 5 kb as a function of oxygen fugacity. I. Mafic phases. J Petrol 14:249–302

    Google Scholar 

  • Hickey RL, Frey FA, Gerlach DC (1986) Multiple sources for basaltic arc rocks from the southern volcanic zone of the Andes (34°-41°S): trace element and isotopic evidence for contributions from subducted oceanic crust, mantle, and continental crust. J Geophys Res 91:5963–5983

    Google Scholar 

  • Horvat M, Buda GY (2004) Geochemistry and petrology of some granitoids from Papuk and Psunj Slavonian Mountains (Croatia). Acta Mineralogica-Petrographica 45:93–100

    Google Scholar 

  • Horvat M, Klötzli U, Jamičić D, Gy Buda, Klötzli E, Hauzenberger C (2018) Geochronology of Granitoids from Psunj and Papuk Mt. Croatia. Geochronometria 45:198–210

    Google Scholar 

  • Horváth P, Balen D, Finger F, Tomljenović B, Krenn E (2010) Contrasting P-T paths from the basement of the Tisia Unit (Slavonian Mts., NE Croatia): application of quantitative phase diagrams and monazite age dating. Lithos 117:269–282

    Google Scholar 

  • Hunter RH (1996) Texture development in cumulate rocks. In: Cawthorn EG (ed) Layered intrusions. Elsevier, Amsterdam, pp 77–101

    Google Scholar 

  • Irvine TN (1982) Terminology for layered intrusions. J Petrol 23:127–162

    Google Scholar 

  • Ivan P, Šimurková M (2016) Geochemistry of metamorphosed basaltic and sedimentary rocks from the Smolník Cu-pyrite deposit (Gemeric Superunit, Western Carpathians): a reappraisal of older geochemical dana. Acta Geologica Slovaca 8:229–242

    Google Scholar 

  • Jamičić D (1983) Structural fabric of the metamorphosed rocks of Mt. Krndija and the easternpart of Mt.Papuk. Geološki vjesnik 36:51–72 (in Croatian, English summary)

  • Jamičić D (1988) Tectonics of the Slavonian Mts. Dissertation, University of Zagreb (in Croatian)

  • Jamičić D (1989) Basic geological map of Yugoslavia scale 1:100.000. Sheet Daruvar (L 33–95), Institut za geološka istraživanja Zagreb. Savezni geološki zavod Beograd

  • Jamičić D (1995) Tectonic events in the southern part of the Pannonian are (Northern Croatia): review and interpretation. In: Vlahović I, Šparica M (eds) Proceedings of the 1st Croatian Geological Congress Opatija. Institute of geology, Zagreb, pp 215–218 (in Croatian)

  • Jamičić D (2001) Main geological features of the Slavonian Mts. focused to the Našice area. Matica Hrvatska, Našički zbornik 6:29–36 (in Croatian)

    Google Scholar 

  • Jamičić D, Brkić M (1987) Basic geological map of Yugoslavia scale 1:100.000. Sheet Orahovica (L 33–96), Institut za geološka istraživanja Zagreb. Savezni geološki zavod Beograd

  • Jamičić D, Brkić M, Crnko J, Vragović M (1987) Basic geological map scale SFRJ 1:100.000, Explanatory notes for sheet Orahovica (L33-96), Institut za geološka istraživanja Zagreb. Savezni geološki zavod Beograd (in Croatian)

  • Jamičić D, Vragović M, Matičec D (1989) Basic geological map of Yugoslavia scale 1:100.000, explanatory notes for sheet Daruvar (L33–95), Institut za geološka istraživanja Zagreb. Savezni geološki zavod, Beograd (in Croatian)

  • Jaques AL (1981) Petrology and petrogenesis of cumulate peridotite and gabbro from the Marum ophiolite complex, northern Papau-New Guinea. J Petrol 22:1–40

    Google Scholar 

  • Kelemen PB, Hanghoj K, Greene AR (2003) One view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust. In: Rudnick RL (ed) The Crust. Treatise on geochemistry, 3. Elsevier–Pergamon, Oxford, pp 593–659

  • Kinzler RJ (1997) Melting ofmantle peridotite at pressure approaching the spinel to garnet transition: application to mid-ocean ridge petrogenesis. J Geophys Res 102:853–874

    Google Scholar 

  • Kocak K, Isika F, Arslanb M, Zedef V (2005) Petrological and source region characteristics of ophiolitichornblende gabbros from the Aksaray and Kayseri regions, central Anatolian crystalline complex, Turkey. J Asian Earth Sci 25:883–891

    Google Scholar 

  • Koppers AAP (2002) ArArCALC—software for 40Ar/39Ar age calculations. Comput Geosci 28:605–619

    Google Scholar 

  • Kovalenko VI, Naumov VB, Girnis AV, Dorofeeva VA, Yarmolyuk VV (2010) Average composition of basic magmas and mantle sources of island arcs and active continental margins estimated from the data on melt inclusions and quenched glasses of rocks. Petrology 18:1–26

    Google Scholar 

  • Kuiper KF, Deino A, Hilgen FJ, Krijgsman W, Renne PR, Wijbrans JR (2008) Synchronizing rock clocks of earth history. Science 320:500–504

    Google Scholar 

  • Laird J, Lanphere A, Albee AL (1984) Distribution of Ordovician and Devonian metamorphism in mafic and pelitic schists from Vermont. Am J Sci 284:376–416

    Google Scholar 

  • Lanphere M, Pamić J (1992) K-Ar and Rb–Sr ages of Alpine granite-metamorphic complexes in the northwestern Dinarides and the southwestern part of the Pannonian Basin in northern Croatia. Acta Geologica Zagreb 22:97–111

    Google Scholar 

  • Lelkes-Felvári GY, Frank W, Schuster R (2003) Geochronological constrains of the Variscan, Permian Triassic and Eo-Alpine (Cretaceous) evolution of the Great Hungarian Olain basement. Geol Carpathica 54:299–315

    Google Scholar 

  • Li HY, Xiao-Long Huang X-L, Guo H (2014) Geochemistry of Cenozoic basalts from the Bohai Bay Basin: implications for a heterogeneous mantle source and lithospheric evolution beneath the eastern North China Craton. Lithos 196–197:54–66

    Google Scholar 

  • Li Y, Yang J, Dilek Y, Zhang J, Pei X, Chen S, Xu X, Li J (2015) Crustal architecture of the Shangdan suture zone in the early Paleozoic Qinling orogenic belt, China: record of subduction initiation and backarc basin development. Gondwana Res 27:733–744

    Google Scholar 

  • Li S, Zhao S, Liu X, Cao H, Yu S, Li X, Somerville I, Yu S, Suo Y (2018) Closure of the Proto-Tethys Ocean and Early Paleozoic amalgamation of microcontinental blocks in East Asia. Earth Sci Rev 186:37–75

    Google Scholar 

  • Lindsley DH (1983) Pyroxene thermometry. Am Miner 68:477–493

    Google Scholar 

  • Liu Y, Xie C, Li C, Li S, Santosh M, Wang M, Fan J (2019) Breakup of the northern margin of Gondwana through lithospheric delamination: evidence from the Tibetan Plateau. Geol Soc Am Bull 131:675–694

    Google Scholar 

  • Loth G, Eichhorn R, Höll R, Kennedy A, Schauder P, Söllner F (2001) Cambro-Ordovician age of a metagabbro from the Wildschönau ophiolite complex, Greywacke (Eastern Alps, Austria): a U-Pb–SHRIMP study. Eur J Miner 13:566–577

    Google Scholar 

  • Ludwig KR (2003) Isoplot 3.09 a geochronological toolkit for microsoft excel. Berkeley Geochronology Center, Special Publication no. 4

  • Meyer PS, Dick JB, Thompson G (1989) Cumulate gabbros from the Southwest Indian Ridge, 54°S-7°16′E: implications for magmatic processes at a slow spreading ridge. Contrib Miner Petrol 103:44–63

    Google Scholar 

  • Middlemost EAK (1985) Magmas and magmatic rocks: an introduction to igneous petrology. Longman, London

    Google Scholar 

  • Miller Ch, Thöni M (1995) Origin of eclogites from the Austroalpine Ötztal basement (Tirol, Austria): geochemistry and Sm-Nd vs Rb-Sr isotope systematics. Chem Geol 122:199–225

    Google Scholar 

  • Moores EM, Vine J (1971) The Troodos massif, Cyprus and other ophiolites as oceanic crust: evaluation and implications. Philos Trans R Soc Lond Ser A Math Phys Sci 268:443–467

    Google Scholar 

  • Morimoto N (1988) Nomenclature of pyroxenes. Schweiz Miner Petrog 68:95–111

    Google Scholar 

  • Nance RD, Gutiérrez-Alonso G, Keppie JD, Linnemann U, Murphy JB, Quesada C, Strachan RA, Woodcock NH (2012) A brief history of the Rheic Ocean. Geosci Front 3:125–135

    Google Scholar 

  • Nance RD, Murphy JB, Santosh M (2014) The supercontinent cycle: a retrospective essay. Gondwana Res 25:4–29

    Google Scholar 

  • Neubauer F (2002) Evolution of late Neoproterozoic to early Paleozoic tectonic elements in Central and Southeast European Alpine mountain belts: review and synthesis. Tectonophysics 352:87–103

    Google Scholar 

  • Neubauer F (2014) Gondwana-land goes Europe. Austrian J Earth Sci 107:147–155

    Google Scholar 

  • Nisbet EG, Pearce JA (1977) Clinopyroxene composition in mafic lavas from different tectonic settings. Contrib Miner Petrol 63:149–160

    Google Scholar 

  • Pamić J, Lanphere M (1991) Hercynian granites and metamorphic rocks from the Papuk, Psunj, Krndija and the surrounding basement of the Pannonian Basin (Northern Croatia, Yugoslavia). Geologija, Ljubljana 34:81–253

    Google Scholar 

  • Pamić J, Jamičić D, Crnko J (1984a) Basic and intermediate igneous rocks associated with meta-morphics of the middle parts of Mountain Psunj (Northern Croa-tia). Geološki vjesnik, Zagreb 37:127–144 (in Croatian, English summary)

    Google Scholar 

  • Pamić J, Jamičić D, Crnko J (1984b) The petrology of ultramafic rocks from the Psunj metamorphic complex in Slavonia (Northern Croatia, Yugoslavia). Rad JAZU, Zagreb 141:93–104 (in Croatian, English summary)

    Google Scholar 

  • Pamić J, Lanphere M, McKee E (1988) Radiometric ages of metamorphic and associated igneous rocks of the Slavonian Mountains in the southern part of the Pannonian Basin, Yugoslavia. Acta Geologica Zagreb 18:13–39

    Google Scholar 

  • Pamić J, Lanphere M, Belak M (1996) Hercyan I-type and S-type granitoids from the Slavonian mountains (southern Pannonian Basin, northern Croatia). Neues Jb Miner Abh 171:155–176

    Google Scholar 

  • Pamić J, Balen D, Tibljaš D (2002) Petrology and geochemistry of orthoamphibolite from the Variscan metamorphic sequences of the South Tisia in Croatia-an overview with geodynamic implications. Int J Earth Sci 91:787–798

    Google Scholar 

  • Pană D, Balintoni I (2000) Igneous protoliths of the Biharia lithotectonic assemblage: timing of intrusion, geochemical considerations, tectonic setting. Studia Universitatis Babeş-Bolyai, Geologia, XlV 1:1–22

    Google Scholar 

  • Parlak O, Delaloye M, Bing LE (1996) Mineral chemistry of ultramafic and mafic cumulates as an indicator of the arc-related origin of the Mersin ophiolite (southern Turkey). Geol Rundsch 85:647–661

    Google Scholar 

  • Parlak O, Höck V, Delaloye M (2000) Supra-subduction zone origin of the Pozantı-Karsantı ophiolite (southern Turkey) deduced from whole-rock and mineral chemistry of the gabbroic cumulates. In: Bozkurt E, Winchester JA, Piper JDA (eds) Tectonics and magmatism in Turkey and the surroundings area. Geol Soc London, Spec Publ 173, pp 219–234

  • Parlak O, Höck V, Delaloye M (2002) The suprasubduction zone Pozanti-Karsanti ophiolite, southern Turkey: evidence for high-pressure crystal fractionation of ultramafic cumulates. Lithos 65:205–224

    Google Scholar 

  • Parlak O, Höck V, Kozlu H, Delaloye M (2004) Oceanic crust generation in an island arc tectonic setting, SE Anatolian Orogenic Belt (Turkey). Geol Mag 141:583–603

    Google Scholar 

  • Pearce JA (1982) Trace element characteristics of lavas from destructive plate boundaries. In: Thorpe RS (ed) Andesites. Wiley, New York, pp 525–548

    Google Scholar 

  • Pearce JA (1996) A user’s guide to basalt discrimination diagrams. In: Wyman DA (ed) Trace element geochemistry of volcanic rocks: applications for massive sulphide exploration. Geol Assoc Canada, Short Course Notes 12, pp 79–113

  • Pearce JA (2008) Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos 100:14–48

    Google Scholar 

  • Pearce JA, Lippard SJ, Roberts S (1984) Characteristics and tectonic significance of supra-subduction zone ophiolites. In: Kokelaar BP, Howells MF (eds) Marginal basin. Geology, Geol Soc London, Spec Publ 16, pp 17–94

  • Perfit MR, Gust DA, Bence AE, Arculus RJ, Taylor SR (1980) Chemical characteristics of island-arc basalts: implications for mantle sources. Chem Geol 30:227–256

    Google Scholar 

  • Plank T (2005) Constraints from thorium/lanthanum on sediment recycling at subduction zone and the evolution of the continents. J Petrol 46:922–944

    Google Scholar 

  • Polat A, Frei R, Appel PWU, Dilek Y, Fryer B, Ordóñez-Calderón JC, Yang Z (2008) The origin and compositions of Mesoarchean oceanic crust: evidence from the 3075 Ma Ivisaartoq greenstone belt, SW Greenland. Lithos 100:293–321

    Google Scholar 

  • Polat A, Appel PWU, Fryer B, Windley B, Frei R, Samson IM, Huang H (2009) Trace element systematics of the Neoarchean Fiskenæsset anorthosite complex and associated meta-volcanic rocks, SW Greenland: evidence for a magmatic arc origin. Precambrian Res 175:87–115

    Google Scholar 

  • Polat A, Frei R, Scherstén A, Appel PWU (2010) New age (ca. 2970 Ma), mantle source composition and geodynamic constraints on the Archean Fiskenæsset anorthosite complex, SW Greenland. Chem Geol 277:1–20

    Google Scholar 

  • Polat A, Fryer B, Appel PWU, Kalvig P, Kerrich R, Dilek Y, Yang Z (2011) Geochemistry of anorthositic differentiated sills in the Archean (~ 2970 Ma) Fiskenæsset Complex, SW Greenland: implications for parental magma compositions, geodynamic setting, and secular heat flow in arcs. Lithos 123:50–72

    Google Scholar 

  • Polat A, Fryer B, Samson IM, Weisener C, Appel PWU, Frei R, Windley BF (2012) Geochemistry of ultramafic rocks and hornblendite veins in the Fiskenæsset layered anorthosite complex, SW Greenland: evidence for hydrous upper mantle in the Archean. Precambrian Res 214–215:124–153

    Google Scholar 

  • Pouchou JL, Pichoir F (1984) A new model for quantitative analyses. I. Application to the analysis of homogeneous samples. La Recherche Aérospatiale 3:13–38

    Google Scholar 

  • Pouchou JL, Pichoir F (1985) “PAP” (φ-ρ-Z) correction procedure for improved quantitative microanalysis. In: Armstrong JT (ed) Microbeam analysis. San Francisco Press, San Francisco, pp 104–106

    Google Scholar 

  • Prouteau G, Scaillet B, Pichavant M, Maury R (2001) Evidence for mantle metasomatism by hydrous silicic melts derived from subducted oceanic crust. Nature 410:197–200

    Google Scholar 

  • Putirka K (2016) Amphibole thermometers and barometers for igneous systems and some implications for eruption mechanisms of felsic magmas at arc volcanoes. Am Miner 101:841–858

    Google Scholar 

  • Putiš M, Sergeev S, Ondrejka M, Larionov A, Siman P, Spišiak J, Uher P, Paderin I (2008) Cambrian-Ordovician metaigneous rocks associated with Cadomian fragments in the West-Carpathian basement dated by SHRIMP on zircons: a record from the Gondwana active margin setting. Geol Carpathica 59:3–18

    Google Scholar 

  • Putiš M, Frank W, Plašienka D, Siman P, Sulák M, Biroň A (2009a) Progradation of the Alpidic Central Western Carpathians orogenic wedge related to two subductions: constrained by 40Ar/39Ar ages of white micas. Geodin Acta 22:31–56

    Google Scholar 

  • Putiš M et al (2009b) Meta-igneous rocks of the West-Carpathian basement, Slovakia: indicators of Early Paleozoic extension and shortening events. B Soc Geol F 180:461–471

    Google Scholar 

  • Révillon S, Arndt NT, Chauvel C, Hallot E (2000) Geochemical study of ultramafic volcanic and plutonic rocks from Gorgana Island, Columbia: the plumbing system of an Oceanic Plateau. J Petrol 41:1127–1153

    Google Scholar 

  • Rietmeijer FJM (1983) Chemical distinction between igneous and metamorphic orthopyroxenes especially those coexisting with Ca-rich clinopyroxenex: a re-evaluation. Miner Mag 47:143–151

    Google Scholar 

  • Ross K, Elthon D (1997) Cumulus and postcumulus crystallization in the ocean crust: major- and trace-element geochemistry of leg 153 gabbroic rocks. In: Karson JA, Cannat M, Millet DJ, Elthon D (eds) Proceedings of the ocean drilling program, scientific results, vol. 153. Ocean Drilling Program, College Station, pp 333–350

  • Saccani E, Dilek Y, Photiades A (2017) Time-progressive mantle—melt evolution and magma production in a Tethyan marginal sea: a case study of the Albanide-Hellenide ophiolites. Lithosphere. https://doi.org/10.1130/L602.1

    Article  Google Scholar 

  • Sarıfakıoğlu E, Özen H, Winchester JA (2009) Whole rock and mineral chemistry of ultramafic-mafic cumulates from the Orhaneli (Bursa) ophiolite, NW Anatolia. Turk J Earth Sci 18:55–83

    Google Scholar 

  • Schaltegger U, Nägler TN, Corfu F, Maggetti M, Galetti G, Stosch H (1997) A Cambrian island arc in the Silvretta nappe: constraints from geochemistry and geochronology. Schweiz Miner Petrograph 77:337–350

    Google Scholar 

  • Schaltegger U, Gebauer D, von Quadt A (2002) The mafic-ultramafic rock association of Loderio-Biasca (lower Pennine nappes, Ticino, Switzerland): Cambrian oceanic magmatism and its bearing on early Paleozoic paleogeography. Chem Geol 186:265–279

    Google Scholar 

  • Schmid SM, Bernoulli D, Fügenschuh B, Matenco L, Scheffer S, Schuster R, Tischler M, Ustaszewski K (2008) The Alpine-Carpathian-Dinaridic orogenic system: correlation and evolution of tectonic units. Swiss J Geosci 101:139–183

    Google Scholar 

  • Schmid SM, Fügensschuh B, Kounov A et al (2019) Tectonic units of the Alpine collision zone between Eastern Alps and western Turkey. Gondwana Res. https://doi.org/10.1016/j.gr.2109.07.005

    Article  Google Scholar 

  • Schmidt MW (1992) Amphibole composition in tonalite as a function of pressure: an experimental calibration of the Al-in-hornblende barometer. Contrib Miner Petrol 110:304–310

    Google Scholar 

  • Serri G (1980) Chemistry and petrology of gabbroic complexes from the Northern Apennine ophiolites. In: Panayiotou E (ed) ophiolites. Cyprus Geological Survey, Nicosia, pp 296–313

    Google Scholar 

  • Serri S (1981) The petrochemistry of ophiolitic gabbro-complexes: a key for classification of ophiolites to low-Ti and high-Ti types. Earth Planet Sci Lett 52:203–212

    Google Scholar 

  • Shervais JW (2001) Birth, dead, and resurrection: the life cycle of supra-subduction zone ophiolites. Geochem Geophys Geosyst. https://doi.org/10.1029/2000GC000080

    Article  Google Scholar 

  • Sherwais JW (1982) Ti-V plots and petrogenesis of modern and ophiolitic lavas. Earth Planet Sci Lett 59:101–118

    Google Scholar 

  • Sölva H, Grasemann B, Thöni M, Thiede RC, Habler G (2005) The Schneeberg Normal Fault Zone: normal faulting associated with Cretaceous SE-directed extrusion in the Eastern Alps (Italy/Austria). Tectonophysics 401:143–166

    Google Scholar 

  • Song S, Bi H, Qi S, Yang L, Allen MB, Niu Y, Su L, Li W (2018) HP–UHP metamorphic belt in the East Kunlun Orogen: final closure of the Proto-Tethys Ocean and formation of the Pan-North-China Continent. J Petrol 59(2043):2060

    Google Scholar 

  • Sotiriou P, Polat A, Frei R, Yang XM (2019) A back-arc origin for the Neoarchean megacrystic anorthosite-bearing Bird River Sill and the associated greenstone belt, Bird River subprovince, Western Superior Province, Manitoba, Canada. Int J Earth Sci 108:2177–2207

    Google Scholar 

  • Sotiriou P, Polat A, Frei R, Yang XM, Van Vessem J (2020) Evidence for Neoarchean hydrous arc magmatism, the anorthosite-bearing Mayville Intrusion, western Superior Province, Canada. Lithos 362–363:105482

    Google Scholar 

  • Stampfli GM, von Raumer J, Wilhem C (2011) The distribution of Gondwana derived terranes in the early Paleozoic. In: Gutiérrez-Marco JC, Rábano I, García-Bellido D (eds) The Ordovician of the World: Cuadernos del Museo Geominero 14. Instituto Geológico y Minero de España, Madrid, pp 567–574

    Google Scholar 

  • Stampfli GM, Hochard C, Vérard C, Wilhem C, von Raumer J (2013) The formation of Pangea. Tectonophysics 593:1–19

    Google Scholar 

  • Stern C (1979) Open and closed system igneous fractionation within two chilean ophiolites and tectonic implication. Contrib Miner Petrol 68:243–258

    Google Scholar 

  • Streckeisen A (1976) To each plutonic rock its proper name. Earth-Sci Rev 12:1–33

    Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in ocean basins. Geol Soc London, Spec Publ 42, pp 313–345

  • Sun SS, Nesbitt RW (1978) Petrogenesis of Archaean ultrabasic and basic volcanics: evidence from rare earth elements. Contrib Miner Petrol 65:301–325

    Google Scholar 

  • Szederkényi T (1996) Metamorphic formations and their correlation in the Hungarian part of Tisia Megaunit (Tisia Megaunit Terrane). Acta Mineralogica-Petrographica XXXVII:143–160

  • Tatsumi Y, Eggins S (1995) Subduction zone magmatism. Blacwell, Cambridge

    Google Scholar 

  • Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell, Oxford

    Google Scholar 

  • Thirlwall MF, Upton BG, Jenkins G (1994) Interaction between continental lithosphere and the Iceland plume: Sr–Nd–Pb isotope geochemistry of Tertiary basalts, NE Greenland. J Petrol 35:839–879

    Google Scholar 

  • Tiepolo M, Tribuzio R (2005) Slab-melting during Alpine orogeny: evidence from mafic cumulates of the Adamello batholith (Central Alps, Italy). Chem Geol 216:271–288

    Google Scholar 

  • Tornare E, Pilet S, Bussy F (2016) Magma differentiation in vertical conduits revealed by the complementary study of plutonic and volcanic rocks from Fuerteventura (Canary Islands). J Petrol 57:2221–2250

    Google Scholar 

  • Torsvik TH, Cocks LRM (2009) The Lower Paleozoic paleogeographical evolution of the northwestern and eastern peri-Gondwanan margin from Turkey to New Zeland. Geol Soc London Spec Publ 325:3–21

    Google Scholar 

  • Ustaszewski K, Schmid SM, Lugović B, Schuster R, Schaltegger U, Bernoulli D, Hottinger L, Kounov A, Fügenschuh B, Scheer S (2009) LateCreatceous intra-oceanic magmatism in the internal Dinarides (northern Bosnia and Herzegovina): implications for the collision of the Adriatic and European plates. Lithos 108:106–125

    Google Scholar 

  • Villa IM (2015) 39Ar-40Ar geochronology of mono-and polymetamorphic basement rocks. Period Miner 84:615–632

    Google Scholar 

  • von Raumer JF, Stampfli GM (2008) The birth of the Rheic Ocean—early Paleozoic subsidence patterns and subsequent tectonic plate scenarios. Tectonophysics 461:9–20

    Google Scholar 

  • von Raumer J, Bussy F, Schaltegger U, Schulz B, Stampfli GM (2013) Mesozoic Alpine basment-their place in the European paleozoic framework. Geol Soc Am Bull 125:89–108

    Google Scholar 

  • von Raumer J, Stampfli GM, Arenas R, Martinez SS (2015) Ediacaran to Cambrian oceanic rocks of the Gondwana margin and their tectonic interpretation. Int J Earth Sci 104:1107–1121

    Google Scholar 

  • Vukadinovic D (1993) Are Sr enrichments in arc basalts due to plagioclase accumulation? Geology 21:611–614

    Google Scholar 

  • Wager LR, Brown GM (1968) Layered igneous rocks. Oliver & Boyd, Edinburgh and London

    Google Scholar 

  • Wager LR, Brown GM, Wadsworth WJ (1960) Types of igneous cumulate. J Petrol 1:73–85

    Google Scholar 

  • Wallin ET, Metcalf RV (1998) Supra-subduction zone ophiolite formed in an extensional forearc: trinity Terrane, Klamath mountains, California. J Geol 106:591–608

    Google Scholar 

  • Wilson M (1989) Igneous petrogenesis. Unwin Hyman Ltd., London

    Google Scholar 

  • Winter JD (2001) An introduction to igneous and metamorphic petrology. Prentice Hall Inc, Upper Saddle River

    Google Scholar 

  • Wood DA (1980) The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province. Earth Planet Sci Lett 50:11–30

    Google Scholar 

  • Xiao W, Windley BF, Hao J, Li J (2002) Arc-ophiolite obduction in the Western Kunlun Range (China): implications for the Palaeozoic evolution of central Asia. J Geol Soc Lond 159:517–528

    Google Scholar 

  • Xu YG, Menzies MA, Thirlwall MF, Xie GH (2001) Exotic lithosphere mantle beneath the western Yangtze craton: petrogenetic links to Tibet using highly magnesian ultrapotassic rocks. Geology 29:863–866

    Google Scholar 

  • Yan Z, Fu C, Aitchison JC, Niu M, Buckman S, Cao B (2019) Early Cambrian Muli arc–ophiolite complex: a relic of the Proto-Tethys oceanic lithosphere in the Qilian Orogen, NW China. Int J Earth Sci 108:1147–1164

    Google Scholar 

  • Yang L, Song S, Su L, Allen MB, Niu Y, Zhang G, Zhang Y (2019) Heterogeneous oceanic arc volcanic rocks in the South Qilian Accretionary Belt (Qilian Orogen, NW China). J Petrol 60:85–116

    Google Scholar 

  • Yin A, Manning CE, Lovera O, Menold CA, Chen X, Gehrels GE (2007) Early paleozoic tectonic and thermomechanical evolution of ultrahigh-pressure (UHP) metamorphic rocks in the Northern Tibetan Plateau, Northwest China. Int Geol Rev 49(681):716

    Google Scholar 

  • Zhang CL, Zou HB, Ye XJ, Chen XJ (2018) Timing of subduction initiation in the Proto-Tethys Ocean: evidence from the Cambrian gabbros from the NE Pamir Plateau. Lithos 314:40–51

    Google Scholar 

  • Zhang LK, Li GM, Santosh M, Cao HW, Dong SL, Zhang Z, Fu JG, Xia XB, Huang Y, Liang W, Zhang ST (2019) Cambrian magmatism in the Tethys Himalaya and implications for the evolution of the Proto-Tethys along the northern Gondwana margin: a case study and overview. Geol J 54:2545–2565

    Google Scholar 

Download references

Acknowledgements

This work has been supported by the Croatian Ministry of Science, Education and Sport (Grant no. 181-1951126-1141 to Da. S., “Mesozoic magmatic, mantle and pyroclastic rocks of north-western Croatia” and Grant no. 181-1811096-1093 to M. B., Basic Geological Map of Croatia 1:50,000) and in part by the Croatian Science Foundation under the project IP-2019-04-3824. Kevin Byerly is thanked for his assistance with the English language. We are especially in debt to Kalin Kouzmanov (University of Geneva) who has provided the microprobe analyses. Critical comments and constructive reviews by Jürgen von Raumer and one anonymous reviewer, as well as the editorial handling by Jean François Moyen and Wolf-Christian Dullo contributed significantly to the manuscript quality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damir Slovenec.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Slovenec, D., Belak, M., Mišur, I. et al. The early Paleozoic cumulate gabbroic rocks from the southwest part of the Tisza Mega-Unit (Mt. Papuk, NE Croatia): evidence of a Gondwana suture zone. Int J Earth Sci (Geol Rundsch) 109, 2209–2233 (2020). https://doi.org/10.1007/s00531-020-01896-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-020-01896-8

Keywords

Navigation