Skip to main content

Advertisement

Log in

Evaluation of antifungal activity of cinnamaldehyde against Cryptococcus neoformans var. grubii

  • Original Article
  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Cryptococcosis is a potentially fatal fungal disease which has aggrandized with the emergence of AIDS and antifungal resistance. The currently used antifungals lack the broad-spectrum activity and result in several toxicities during long treatment regimens. Thus, the present study aims to evaluate the antifungal activity of cinnamaldehyde against Cryptococcus neoformans var. grubii, the etiological agent of the disease. Quantitative and qualitative in vitro fungal susceptibilities were carried out by minimum inhibitory concentration assay, flow cytometric analysis, and confocal microscopy. Micromorphological alterations were studied through scanning electron and light microscopies. “In vivo” antifungal efficacy of cinnamaldehyde was assessed. Cinnamaldehyde showed antifungal activity against C. neoformans in a dose-dependent manner. A concentration of 1.37 mg/mL of cinnamaldehyde was found to be inhibitory and fungicidal while the low concentration (0.68 mg/mL) was found to induce micromorphological changes and formation of giant/titan-like cells in this pathogen. The reparative activity of cinnamaldehyde and its ability to prolong the life even after the advent of cryptococcal meningitis in mice was also noticed. This study suggests potent anti-cryptococcal activity of cinnamaldehyde. Though, it has a couple of limitations like allergy and low bioavailability. However, these problems can be circumvented by developing suitable analogs of the compound. It, therefore, could be used as a therapeutic option against cryptococcosis and cryptococcal meningitis. Moreover, the evaluation of its pharmacokinetic and pharmacodynamic properties is desirable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Aebi HE (1974) Catalase methods of enzymatic analysis, vol 2. Academic press, New York, pp 673–684

    Book  Google Scholar 

  • Busse O (1894) Über parasitäre Zelleinschlüsse und ihre Züchtung Zbl Bakt I Abt Orig 16: 175-180

  • Casadevall A, Perfect JR (1998) Cryptococcus neoformans. ASM press, Washington, DC

  • Casadevall A, Coelho C, Alanio A (2018) Mechanisms of Cryptococcus neoformans-mediated host damage. Front Immunol 9:855

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Center for disease control and prevention (2018) Treatment of C. neoformans infection. Accessed on 01 May, 2018, https://www.cdc.gov/fungal/diseases/cryptococcosis-neoformans/treatment.html

  • Clinical and Laboratory Standards Institute (2017) Reference method for broth dilution antifungal susceptibility testing of yeasts: approved standard M27 4th ed

  • Clinical and Laboratory Standards Institute (2018) Method for antifungal disk diffusion susceptibility testing of yeasts; approved guideline M44 3rd ed

  • Courchesne WE, Tunc M, Liao S (2009) Amiodarone induces stress responses and calcium flux mediated by the cell wall in Saccharomyces cerevisiae. Can J Microbiol 55:288–303

    Article  CAS  PubMed  Google Scholar 

  • Cruickshank JG, Cavill R, Jelbert M (1973) Cryptococcus neoformans of unusual morphology. Appl Microbiol 25:309–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’Souza CA, Alspaugh JA, Yue C, Harashima T, Cox GM, Perfect JR, Heitman J (2001) Cyclic AMP-dependent protein kinase controls virulence of the fungal pathogen Cryptococcus neoformans. Mol Cell Biol 21:3179–3191

    Article  PubMed  PubMed Central  Google Scholar 

  • Dambuza IM, Drake T, Chapuis A, Zhou X, Correia J, Taylor-Smith L, LeGrave N, Rasmussen T, Fisher MC, Bicanic T, Harrison T, Jaspars M, May RC, Brown GD, Yuecel R, MacCallum DM, Ballou ER (2018) The Cryptococcus neoformans Titan cell is an inducible and regulated morphotype underlying pathogenesis. PLoS Pathog 14:e1006978

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Das K, Samanta L, Chainy GB (2000) A modified spectrophotometric assay of superoxide dismutase using nitrite formation by superoxide radicals. Indian J Biochem Biophys 37:201–204

    CAS  Google Scholar 

  • DeJong RJ, Miller LM, Molina-Cruz A, Gupta L, Kumar S, Barillas-Mury C (2007) Reactive oxygen species detoxification by catalase is a major determinant of fecundity in the mosquito Anopheles gambiae. PNAS 104:2121–2126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Denning DW, Armstrong RW, Lewis BH (1991) Stevens DA Elevated cerebrospinal fluid pressures in patients with cryptococcal meningitis and acquired immunodeficiency syndrome. Am J Med 9:267–272

    Article  Google Scholar 

  • Dromer F, Mathoulin S, Dupont B, Laporte A (1996) Epidemiology of cryptococcosis in France: a 9-year survey (1985–1993). French Cryptococcosis Study Group. Clin Infect Dis 23:82–90

    Article  CAS  PubMed  Google Scholar 

  • Green L, Petersen B, Steimel L, Haeber P, Current W (1994) Rapid determination of antifungal activity by flow cytometry. J Clin Microbiol 32:1088–1091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grotto D, Maria LS, Valentini J, Paniz C, Schmitt G, Garcia SC, Pomblum VJ, Rocha JBT, Farina M (2009) Importance of the lipid peroxidation biomarkers and methodological aspects for malondialdehyde quantification. Química Nova 32:169–174

    Article  CAS  Google Scholar 

  • Gupta C, Kumari A, Garg AP (2012) Comparative study of cinnamon oil and clove oil in some oral microbiota. Acta Biomed Atenei Parmensis 82:197–199

    Google Scholar 

  • Hommel B, Mukaremera L, Cordero RJ, Coelho C, Desjardins CA, Sturny-Leclère A, Janbon G, Perfect JR, Fraser JA, Casadevall A, Cuomo CA, Dromer F, Nielsen K, Alanio A (2018) Titan cells formation in Cryptococcus neoformans is finely tuned by environmental conditions and modulated by positive and negative genetic regulators. PLoS Pathog 14:e1006982

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Khawcharoenporn T, Apisarnthanarak A, Mundy LM (2007) Non-neoformans cryptococcal infections: a systematic review. Infection 35:51–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khoubnasabjafari M, Ansarin K, Jouyban A (2015) Reliability of malondialdehyde as a biomarker of oxidative stress in psychological disorders. BioImpacts 5:123–127

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JH, Faria NC, Martins MDL, Chan KL, Campbell BC (2012) Enhancement of antimycotic activity of amphotericin B by targeting the oxidative stress response of Candida and Cryptococcus with natural dihydroxybenzaldehydes. Front Microbiol 3:261

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kong JO, Lee SM, Moon YS, Lee SG, Ahn YJ (2007) Nematicidal activity of cassia and cinnamon oil compounds and related compounds toward Bursaphelenchus xylophilus (Nematoda: Parasitaphelenchidae). J Nematol 39:31–36

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumari P, Mishra R, Arora N, Chatrath A, Gangwar R, Roy P, Prasad R (2017) Antifungal and anti-biofilm activity of essential oil active components against Cryptococcus neoformans and Cryptococcus laurentii. Front Microbiol 8:2161

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin X, Heitman J (2006) The biology of the Cryptococcus neoformans species complex. Annu Rev Microbiol 60:69–105

    Article  CAS  PubMed  Google Scholar 

  • Litvintseva AP, Kestenbaum L, Vilgalys R, Mitchell TG (2005) Comparative analysis of environmental and clinical populations of Cryptococcus neoformans. J Clin Microbiol 43:556–564

    Article  PubMed  PubMed Central  Google Scholar 

  • Love GL, Boyd GD, Greer DL (1985) Large Cryptococcus neoformans isolated from brain abscess. J Clin Microbiol 22:1068–1070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    Article  CAS  PubMed  Google Scholar 

  • Martinez SC, Tanabe K, Cras-Méneur C, Abumrad NA, Bernal-Mizrachi E, Permutt MA (2008) Inhibition of Foxo1 protects pancreatic islet β-cells against fatty acid and ER-stress induced apoptosis. Diabetes 57:846–859

    Article  CAS  PubMed  Google Scholar 

  • Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  CAS  PubMed  Google Scholar 

  • Ooi LS, Li Y, Kam SL, Wang H, Wong EY, Ooi VE (2006) Antimicrobial activities of cinnamon oil and cinnamaldehyde from the Chinese medicinal herb Cinnamomum cassia Blume. Am J Chin Med 34:511–522

    Article  CAS  PubMed  Google Scholar 

  • Perfect JR (2006) Cryptococcus neoformans: the yeast that likes it hot. FEMS Yeast Res 6:463–468

    Article  CAS  PubMed  Google Scholar 

  • Perfect JR (2016) Is there an emerging need for new antifungals? Expert Opin Emerg Drugs 21:129–130

    Article  PubMed  Google Scholar 

  • Pina-Vaz C, Costa-de-Oliveira S, Rodrigues AG, Espinel-Ingroff A (2005) Comparison of two probes for testing susceptibilities of pathogenic yeasts to voriconazole, itraconazole, and caspofungin by flow cytometry. J Clin Microbiol 43:4674–4679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Powderly WG (2008) Dosing amphotericin B in cryptococcal meningitis. Clin Infect Dis 47:131–132

    Article  CAS  PubMed  Google Scholar 

  • Sanla-Ead N, Jangchud A, Chonhenchob V, Suppakul P (2012) Antimicrobial activity of cinnamaldehyde and eugenol and their activity after incorporation into cellulose based packaging films. Packag Technol Sci 25:7–17

    Article  CAS  Google Scholar 

  • Schmertmann LJ, Bodley K, Meyer W, Malik R, Krockenberger MB (2018) Multi-locus sequence typing as a tool to investigate environmental sources of infection for cryptococcosis in captive birds. Med Mycol 57:653–657

    Article  Google Scholar 

  • Shreaz S, Bhatia R, Khan N, Muralidhar S, Basir SF, Manzoor N, Khan LA (2011) Spice oil cinnamaldehyde exhibits potent anticandidal activity against fluconazole resistant clinical isolates. Fitoterapia 82:1012–1020

    Article  CAS  PubMed  Google Scholar 

  • Shreaz S, Wani WA, Behbehani JM, Raja V, Irshand M, Karched M et al (2016) Cinnamaldehyde and its derivatives, a novel class of antifungal agents. Fitoterapia 112:116–131

    Article  CAS  PubMed  Google Scholar 

  • Sies HE (1997) Physiological society symposium: impaired endothelial and smooth muscle cell function in oxidative stress. Exp Physiol 82:291–295

    Article  CAS  PubMed  Google Scholar 

  • Singh K, Ilkit M, Shokohi T, Tolooe A, Malik R, Seyedmousavi S (2017a) In: Seyedmousavi S, de Hoog GS, Guillot J, Verweij PE (eds) Cryptococcosis: emergence of Cryptococcus gattii in animals and zoonotic potential in emerging and epidemic fungal infections in animals. Springer International Publishing AG

  • Singh K, Rani J, Neelabh RGK, Singh M (2017b) The Southeastern Asian house mouse (Mus musculus castaneus Linn.) as a new passenger host for Cryptococcus neoformans var. grubii molecular type VNI. Med Mycol 55:820–827

    Article  PubMed  Google Scholar 

  • Sloan DJ, Parris V (2014) Cryptococcal meningitis: epidemiology and therapeutic options. Clin Epidemiol 6:169–182

    Article  PubMed  PubMed Central  Google Scholar 

  • Song F, Li H, Sun J, Wang S (2013) Protective effects of cinnamic acid and cinnamic aldehyde on isoproterenol-induced acute myocardial ischemia in rats. J Ethnopharmacol 150:125–130

    Article  CAS  PubMed  Google Scholar 

  • Trevijano-Contador N, de Oliveira HC, Garcia-Rodas R, Rossi SA, Llorente I, Zaballos A, Janbon G, Ariño J, Zaragoza O (2018) Cryptococcus neoformans can form titan-like cells in vitro in response to multiple signals. PLoS Pathog 14:e1007007

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yuan J, Dieter MP, Bucher JR, Jameson CW (1993) App of microencapsulation for toxicology studies: III. Bioavailability of microencapsulated cinnamaldehyde. Toxicol Sci 20:83–87

    Article  CAS  Google Scholar 

  • Zaragoza O, Alvarez M, Telzak A, Rivera J, Casadevall A (2007) The relative susceptibility of mouse strains to pulmonary Cryptococcus neoformans infection is associated with pleiotropic differences in the immune response. Infect Immun 75:2729–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaragoza O, García-Rodas R, Nosanchuk JD, Cuenca-Estrella M, Rodríguez-Tudela JL, Casadevall A (2010) Fungal cell gigantism during mammalian infection. PLoS Pathog 6:e1000945

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Principal, Mahila Mahavidyalaya for providing the infrastructure facilities. The authors also wish to thank DST-SERB, New Delhi, for providing grant (EMR/2016/001396). One of the authors, Neelabh, would like to thank Indian Council of Medical Research (ICMR) for providing Senior Research Fellowship. However, this fellowship was not used in any way to fund this work. The authors are also thankful to Dr. Radha Chaube and Sandhya Sharma for photomicrography and Dr. Biplob Koch and Mr. Nishant Kumar Rana for flow cytometry studies and Ankita Kumari for biochemical studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karuna Singh.

Ethics declarations

Conflict of interest

We wish to confirm that there are no known conflicts of interest associated with this publication and there has been no significant financial support for this work that could have influenced its outcome.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neelabh, Singh, K. Evaluation of antifungal activity of cinnamaldehyde against Cryptococcus neoformans var. grubii. Folia Microbiol 65, 973–987 (2020). https://doi.org/10.1007/s12223-020-00806-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-020-00806-4

Keywords

Navigation