Skip to main content
Log in

Pattern analysis and dating for the Badain Jaran dune field, northwestern China

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Pattern analysis can estimate dune formation ages, judge wind conditions and extract environmental signals from the common pattern parameters of active dune field. For the extraterrestrial dune fields, this method is a great advantage while many in situ and laboratory techniques cannot do anything. An ideal location for the large-scale pattern analysis test is the Badain Jaran desert where the tallest terrestrial aeolian dune occurs. In this study, the function forms of pattern parameters varying with the dune construction time are established, according to the natural evolution of a dune field in the duration of over 10 years. It is revealed that the relations between pattern parameters and time display power functions, in which the unknown coefficients in different conditions of wind regimes and sand availabilities can be estimated from the absolute ages of local deposits. From the northwest to southeast of the Badain Jaran desert, the dune crest length and mean spacing increase, and the defect density decreases. The pattern ages change correspondingly. Dune orientation mostly ranges between \(10^{\circ }\) and \(60^{\circ }\). The crest length ages indicate that the modern active dune field began to form at about 20–75 ka BP, the dunes in the southeast and northeast are older than those in the western. This work confirms that pattern analysis offers an effective dating method for hard-to-reach or large-scale dune fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aitken MJ (1998) An introduction to optical dating: the dating of Quaternary sediments by the use of photon-stimulated luminescence. Oxford University Press, Oxford, New York

    Google Scholar 

  • Al-Masrahy MA, Mountney NP (2013) Remote sensing of spatial variability in aeolian dune and interdune morphology in the Rub’ Al-Khali, Saudi Arabia. Aeolian Research 11:155–170

    Google Scholar 

  • Azzaoui M, Manare A, Elbelrhiti H, Chaouki I, Masmoudi L (2019) Detection of crescent sand dunes contours in satellite images using an active shape model with a cascade classifier. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLII-4/W12:17–24

  • Breed CS, Fryberger S, Andrews S, McCauley C, Lennartz F, Gebel D, Horstman K (1979) Regional studies of sand seas using landsat (erts) imagery. In: McKee ED (ed) A study of global sand seas, U.S. Government Printing Office, Washington, pp 305–397

  • Bristow CS, Bailey SD, Lancaster N (2000) The sedimentary structure of linear sand dunes. Nature 406:56–59

    Google Scholar 

  • Bristow CS, Duller GAT, Lancaster N (2007) Age and dynamics of linear dunes in the Namib Desert. Geology 35(6):555–558

    Google Scholar 

  • Charru F, Andreotti B, Claudin P (2013) Sand ripples and dunes. Annual Review of Fluid Mechanics 45(1):469–493

    Google Scholar 

  • Chen T, Lai Z, Liu S, Wang Y, Wang ZT, Miao X, An F, Yu L, Han F (2019) Luminescence chronology and palaeoenvironmental significance of limnic relics from the Badain Jaran desert, northern China. Journal of Asian Earth Sciences 177:240–249

    Google Scholar 

  • Day M, Kocurek G (2018) Pattern similarity across planetary dune fields. Geology 46(11):999–1002

    Google Scholar 

  • Derickson D, Kocurek G, Ewing RC, Bristow C (2008) Origin of a complex and spatially diverse dune-field pattern, Algodones, southeastern California. Geomorphology 99(1–4):186–204

    Google Scholar 

  • Dong Z, Wang T, Wang X (2004) Geomorphology of the megadunes in the Badain Jaran Desert. Geomorphology 60(1–2):191–203

    Google Scholar 

  • Dong Z, Qian G, Luo W, Zhang Z, Xiao S, Zhao A (2009) Geomorphological hierarchies for complex mega-dunes and their implications for mega-dune evolution in the Badain Jaran Desert. Geomorphology 106(3–4):180–185

    Google Scholar 

  • Dong Z, Qian G, Lv P, Hu G (2013) Investigation of the sand sea with the tallest dunes on Earth: China’s Badain Jaran sand sea. Earth-Science Reviews 120:20–39

    Google Scholar 

  • Elbelrhiti H, Claudin P, Andreotti B (2005) Field evidence for surface-wave-induced instability of sand dunes. Nature 437(7059):720–723

    Google Scholar 

  • Elbelrhiti H, Andreotti B, Claudin P (2008) Barchan dune corridors: Field characterization and investigation of control parameters. Journal of Geophysical Research 113(F2):1–21

    Google Scholar 

  • Ewing RC, Kocurek G (2010a) Aeolian dune-field pattern boundary conditions. Geomorphology 114(3):175–187

    Google Scholar 

  • Ewing RC, Kocurek G (2010b) Aeolian dune interactions and dune-field pattern formation: White Sands Dune Field, New Mexico. Sedimentology pp 1199–1219

  • Ewing RC, Kocurek G, Lake LW (2006) Pattern analysis of dune-field parameters. Earth Surface Processes and Landforms 31(9):1176–1191

    Google Scholar 

  • Ewing RC, McDonald GD, Hayes AG (2015) Multi-spatial analysis of aeolian dune-field patterns. Geomorphology 240:44–53

    Google Scholar 

  • Fenton LK, Michaels TI, Beyer RA (2014) Inverse maximum gross bedform-normal transport 1: How to determine a dune-constructing wind regime using only imagery. Icarus 230:5–14

    Google Scholar 

  • Fischer S, Cates ME, Kroy K (2008) Dynamic scaling of desert dunes. Physical Review E 77:031302

    Google Scholar 

  • Greeley R, Iversen JD (1985) Wind as a geological process: On Earth, Mars, Venus and Titan. Cambridge University Press, Cambridge

    Google Scholar 

  • Hugenholtz CH, Levin N, Barchyn TE, Baddock MC (2012) Remote sensing and spatial analysis of aeolian sand dunes: A review and outlook. Earth-Science Reviews 111(3–4):319–334

    Google Scholar 

  • Huntley DJ, Godfrey-Smith DI, Thewalt MLW (1985) Optical dating of sediments. Nature 313(5998):105–107

    Google Scholar 

  • Kocurek G, Ewing RC (2005) Aeolian dune field self-organization - implications for the formation of simple versus complex dune-field patterns. Geomorphology 72(1–4):94–105

    Google Scholar 

  • Kocurek G, Townsley M, Yeh E, Havholm KG, Sweet ML (1992) Dune and dune-field development on Padre Island, Texas, with implications for interdune deposition and water-table-controlled accumulation. SEPM Journal of Sedimentary Research 62:622–635

    Google Scholar 

  • Kocurek G, Ewing RC, Mohrig D (2010) How do bedform patterns arise? New views on the role of bedform interactions within a set of boundary conditions. Earth Surface Processes and Landforms 35(1):51–63

    Google Scholar 

  • Li Z, Wang N, Cheng H, Ning K, Zhao L, Li R (2015) Formation and environmental significance of late Quaternary calcareous root tubes in the deserts of the Alashan Plateau, northwest China. Quaternary International 372:167–174

    Google Scholar 

  • Li J, Dong Z, Qian G, Zhang Z, Luo W, Lu J, Wang M (2016) Pattern analysis of a linear dune field on the northern margin of Qarhan Salt Lake, northwestern China. Journal of Arid Land 8(5):670–680

    Google Scholar 

  • Liu S, Lai Z, Wang Y, Fan X, Wang L, Tian M, Jiang Y, Zhao H (2016) Growing pattern of mega-dunes in the Badain Jaran desert in China revealed by luminescence ages. Quaternary International 410:111–118

    Google Scholar 

  • Lorenz R, Zimbelman JR (2014) Dune worlds: How windblown sand shapes planetary landscapes. Springer Praxis Books Geophysical Sciences. Springer, Berlin

    Google Scholar 

  • Mischke S (2005) New evidence for origin of Badain Jaran Desert of Inner Mongolia from granulometry and thermoluminescence dating. Journal of Palaeogeography 7(1):79–96

    Google Scholar 

  • Momiji H (2001) Mathematical modelling of the dynamics and morphology of aeolian dunes and dune fields. PhD thesis, University College London

  • Ning WX, Wang ZT (2018) Analysis of morphological parameters of mega-dunes in the southeast of badain jaran desert. Journal of Fujian Agriculture and Forestry University (natural science edition) 47(6):755–763 (in Chinese)

    Google Scholar 

  • Ning WX, Liu XY, Wang ZT (2019) An analytical model for the growth and migration of a transverse dune. The European Physical Journal E 42:42

    Google Scholar 

  • Parteli E, Kroy K, Tsoar H, Andrade J, Pöschel T (2014) Morphodynamic modeling of aeolian dunes: Review and future plans. The European Physical Journal Special Topics 223(11):2269–2283

    Google Scholar 

  • Ping L, Narteau C, Dong Z, Zhang Z, Courrech du Pont S (2014) Emergence of oblique dunes in a landscape-scale experiment. Nature Geoscience 7(2):99–103

    Google Scholar 

  • Pye K, Tsoar H (2009) Aeolian sand and sand dunes. Springer, Berlin

    Google Scholar 

  • Savage CJ, Radebaugh J, Christiansen EH, Lorenz RD (2014) Implications of dune pattern analysis for Titan’s surface history. Icarus 230:180–190

    Google Scholar 

  • Schwämmle V, Herrmann H (2004) Modelling transverse dunes. Earth Surface Processes and Landforms 29(6):769–784

    Google Scholar 

  • Scuderi L (2019) The fingerprint of linear dunes. Aeolian Research 39:1–12

    Google Scholar 

  • Sharp RP (1963) Wind ripples. The Journal of Geology 71(5):617–636

    Google Scholar 

  • Tang G, Yang X (2010) ArcGIS geographic information system spatial analysis experiment tutorial, 2nd edn. Science Press, Beijing

    Google Scholar 

  • Telfer MW, Parteli EJR, Radebaugh J, Beyer RA, Bertrand T, Forget F, Nimmo F, Grundy WM, Moore JM, Stern SA, Spencer J, Lauer TR, Earle AM, Binzel RP, Weaver HA, Olkin CB, Young LA, Ennico K, Runyon K, The New Horizons Geology, Geophysics and Imaging Science Theme Team (2018) Dunes on Pluto. Science 360(6392):992–997

  • USGS (2018) Earth explorer. http://earthexplorer.usgs.gov/, accessed October 1, 2018

  • Walker AS, Olsen JW, Bagen (1987) The Badain Jaran desert: Remote sensing investigations. Geographical Journal 153(2):205–210

    Google Scholar 

  • Wang T (2011) Deserts and aeolian desertification in China. Science Press, Beijing

    Google Scholar 

  • Wang ZT, Tao SC, Xie YW, Dong GH (2007) Barchans of Minqin: Morphometry. Geomorphology 89(3–4):405–411

    Google Scholar 

  • Wang F, Sun D, Chen F, Bloemendal J, Guo F, Li Z, Zhang Y, Li B, Wang X (2015) Formation and evolution of the Badain Jaran Desert, North China, as revealed by a drill core from the desert centre and by geological survey. Palaeogeography, Palaeoclimatology, Palaeoecology 426:139–158

    Google Scholar 

  • Wang ZT, Chen TY, Liu SW, Lai ZP (2016) Aeolian origin of interdune lakes in the badain jaran desert, china. Arabian Journal of Geosciences 9(3):190

    Google Scholar 

  • Wang F, Li B, Jiang S, Niu D, Wen X, Li Z, Si Y, Guo Y, Yang Z, Liu E (2017) Climate changes at millennium scale in East Asian monsoon during OIS3a in Badain Jaran Desert, China. Environmental Earth Sciences 76(2):71

    Google Scholar 

  • Wang X, Cai D, Sun J, Lu H, Liu W, Qiang M, Cheng H, Che H, Hua T, Zhang C (2019) Contributions of modern Gobi Desert to the Badain Jaran Desert and the Chinese Loess Plateau. Scientific Reports 9(1):985

    Google Scholar 

  • Werner BT (1995) Eolian dunes: Computer simulations and attractor interpretation. Geology 23(12):1107–1110

    Google Scholar 

  • Werner BT (1999) Complexity in natural landform patterns. Science 284(5411):102–104

    Google Scholar 

  • Werner BT, Gillespie DT (1993) Fundamentally discrete stochastic model for wind ripple dynamics. Physical Review Letters 71(19):3230–3233

    Google Scholar 

  • Werner BT, Kocurek G (1997) Bed-form dynamics: Does the tail wag the dog? Geology 25(9):771–774

    Google Scholar 

  • Werner BT, Kocurek G (1999) Bedform spacing from defect dynamics. Geology 27(8):727–730

    Google Scholar 

  • Wintle AG (2008) Fifty years of luminescence dating. Archaeometry 50(2):276–312

    Google Scholar 

  • Wu JF, Guo F (2012) Geomorphological patterns in a linear dune field and ages of the linear dunes in the northern Kumtagh Desert, northwest China. Environmental Earth Sciences 66(8):2449–2457

    Google Scholar 

  • Yan MC, Wang GQ, Li BS, Dong GR (2001) Formation and growth of high megadunes in Badain Jaran Desert. Acta Geographica Sinica 26:83–91 (in Chinese)

    Google Scholar 

  • Yang X (2001) Landscape evolution and palaeoclimate in the deserts of northwestern China, with a special reference to Badain Jaran and Taklamakan. Chinese Science Bulletin 46(S1):6–10

    Google Scholar 

  • Yang X, Liu T, Xiao H (2003) Evolution of megadunes and lakes in the Badain Jaran Desert, Inner Mongolia, China during the last 31,000 years. Quaternary International 104(1):99–112

    Google Scholar 

  • Yang X, Scuderi L, Liu T, Paillou P, Li H, Dong J, Zhu B, Jiang W, Jochems A, Weissmann G (2011) Formation of the highest sand dunes on Earth. Geomorphology 135(1–2):108–116

    Google Scholar 

  • Yang Y, Qu Z, Shi P, Liu L, Zhang G, Tang Y, Hu X, Lv Y, Xiong Y, Wang J, Shen L, Lv L, Sun S (2014) Wind regime and sand transport in the corridor between the Badain Jaran and Tengger deserts, central Alxa Plateau, China. Aeolian Research 12:143–156

    Google Scholar 

  • Zhang K, Qu J, An Z (2012) Characteristics of wind-blown sand and near-surface wind regime in the Tengger Desert, China. Aeolian Research 6:83–88

    Google Scholar 

  • Zhang KQ, Wu ZH, Lü TY, Feng H (2015a) Review and progress of OSL dating. Geological Bulletin of China 34(1):183–202 (in Chinese)

    Google Scholar 

  • Zhang Z, Dong Z, Li C (2015b) Wind regime and sand transport in China’s Badain Jaran Desert. Aeolian Research 17:1–13

    Google Scholar 

  • Zhang ZC, Dong ZB, Wen Q, Jiang CW (2015c) Wind regimes and aeolian geomorphology in the western and southwestern Tengger Desert, NW China. Geological Journal 50(6):707–719

    Google Scholar 

  • Zhao T, Liu W, Xu Z, Liu T, Xu S, Cui L, Shi C (2019) Cosmogenic nuclides ($^{10}$Be and $^{26}$Al) erosion rate constraints in the Badain Jaran Desert, northwest China: implications for surface erosion mechanisms and landform evolution. Geosciences Journal 23(1):59–68

    Google Scholar 

  • Zhu JF, Wang NA, Chen HB, Yu DC, Zhang HA (2010) Study on the boundary and the area of badain jaran desert based on remote sensing imagery. Progress in Geography 29(9):1087–1094 (in Chinese)

    Google Scholar 

Download references

Acknowledgements

We are grateful to the anonymous reviewers for their insightful comments, to Xu-Yang Liu and Dai-Qiang Lu for their careful proofreading of the original manuscript. This research was supported by the Natural Science Foundation of China projects (Nos. 41571006 and 41630747).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Xiao Ning.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ning, WX., Wang, ZT. Pattern analysis and dating for the Badain Jaran dune field, northwestern China. Environ Earth Sci 79, 347 (2020). https://doi.org/10.1007/s12665-020-09066-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-020-09066-4

Keywords

Navigation