Skip to main content

Advertisement

Log in

Implications of ambiguity in Antarctic ice sheet dynamics for future coastal erosion estimates: a probabilistic assessment

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

Sea-level rise (SLR) can amplify the episodic erosion from storms and drive chronic erosion on sandy shorelines, threatening many coastal communities. One of the major uncertainties in SLR projections is the potential rapid disintegration of large fractions of the Antarctic ice sheet (AIS). Quantifying this uncertainty is essential to support sound risk management of coastal areas, although it is neglected in many erosion impact assessments. Here, we use the island of Sint Maarten as a case study to evaluate the impact of AIS uncertainty for future coastal recession. We estimate SLR-induced coastal recession using a probabilistic framework and compare and contrast three cases of AIS dynamics within the range of plausible futures. Results indicate that projections of coastal recession are sensitive to local morphological factors and assumptions made on how AIS dynamics are incorporated into SLR projections and that underestimating the potential rapid mass loss from the AIS can lead to ill-informed coastal adaptation decisions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anderson TR, Fletcher CH, Barbee MM, Frazer LN, Romine BM (2015) Doubling of coastal erosion under rising sea level by mid-century in Hawaii. Nat Hazards 78(1):75–103. https://doi.org/10.1007/s11069-015-1698-6

    Article  Google Scholar 

  • Annan J, Hargreaves J (2010) Reliability of the CMIP3 ensemble. Geophys Res Lett 37(L02703):1–5

    Google Scholar 

  • Athanasiou P, Van Dongeren A, Giardino A, Vousdoukas M, Gaytan-Aguilar S, Ranasinghe R (2019) Global distribution of nearshore slopes with implications for coastal retreat. Earth System Science Data 11(4):1515–1529. https://doi.org/10.5194/essd-11-1515-2019

    Article  Google Scholar 

  • Bamber J, Aspinall W (2013) An expert judgement assessment of future sea level rise from the ice sheets. Nat Clim Chang 3:424–428

    Article  Google Scholar 

  • Bloemendaal N, Haigh ID, de Moel H, Muis S, Haarsma RJ, Aerts JCJH (2020) Generation of a global synthetic tropical cyclone hazard dataset using STORM. Sci Data 7(1):40. https://doi.org/10.1038/s41597-020-0381-2

    Article  Google Scholar 

  • Boon J, Green MO (1988) Caribbean beach-face slopes and beach equilibrium profiles. Coast Eng 120:1618–1630

    Google Scholar 

  • Bruun P (1954) Coast erosion and the development of beach profiles’, beach erosion board technical memorandum. Tech. Rep., U.S. Army engineer waterways Experiment Station. Vicksburg, MS

  • Buchanan M, Oppenheimer M, Kopp R (2017) Amplification of flood frequencies with local sea level rise and emerging flood regimes. Environ Res Lett 12(064009):1–7

    Google Scholar 

  • Callaghan D, Nielson P, Short A, Ranasinghe R (2008) Statistical simulation of wave climate and extreme beach erosion. Coast Eng 55:375–390

    Article  Google Scholar 

  • Callaghan DP, Roshanka R, Andrew S (2009) Quantifying the storm erosion hazard for coastal planning. Coast Eng 56(1):90–93. https://doi.org/10.1016/j.coastaleng.2008.10.003

    Article  Google Scholar 

  • Callaghan DP, Ranasinghe R, Roelvink D (2013) Probabilistic estimation of storm erosion using analytical, semi-empirical, and process based storm erosion models. Coast Eng 82:64–75. https://doi.org/10.1016/j.coastaleng.2013.08.007

    Article  Google Scholar 

  • Carley J, Cox R (2003) A methodology for utilising time- dependent beach erosion models for design events. In: proceedings of the 16th Australasian coastal and ocean engineering conference, Auckland, New Zealand

  • Carrère L, Lyard F (2003) Modeling the barotropic response of the global ocean to atmospheric wind and pressure forcing - comparisons with observations. Geophys Res Lett 30(6):1997–2000. https://doi.org/10.1029/2002GL016473

    Article  Google Scholar 

  • Carrere L, Lyard F, Cancet M, Guillot A (2015) FES 2014, a new tidal model on the global ocean with enhanced accuracy in shallow seas and in the Arctic region. EGU General Assembly Conference Abstracts 17:5481

    Google Scholar 

  • Church J, Clark P, Cazenave A, Gregory J, Jevrejeva S, Levermann A, Merrifield M, Milne G, Nerem R, Nunn P, Payne A, Pfeffer W, Stammer D, Unnikrishan A (2013) Sea level change. In: Climate change 2013: The physical science basis. Contribution of working group i to the fifth assessment report of the intergovernmental panel on climate change. Tech. rep. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA

    Google Scholar 

  • Cohn N, Ruggiero P, de Vries S, Kaminsky GM (2018) New insights on coastal foredune growth: the relative contributions of marine and Aeolian processes. Geophys Res Lett 45:4965–4973. https://doi.org/10.1029/2018GL077836

    Article  Google Scholar 

  • Cooper J, Pilkey O (2004) Sea-level rise and shoreline retreat: time to abandon the bruun rule. Glob Planet Chang 43:157–171

    Article  Google Scholar 

  • Corbella S, Stretch D (2012) Predicting coastal erosion trends using non-stationary statistics and process-based models. Coast Eng 70:40–49

    Article  Google Scholar 

  • Cowell PJ, Thom BG, Jones RA, Everts CH, Simanovic D (2006) Management of uncertainty in predicting climate-change impacts on beaches. J Coast Res 221:232–245. https://doi.org/10.2112/05A-0018.1

    Article  Google Scholar 

  • Dastgheib A, Jongejan R, Wickramanayake M, Ranasinghe R (2018) Regional scale risk-informed land-use planning using probabilistic coastline recession modelling and economical optimisation: East coast of Sri Lanka. J Mar Sci Eng in review

    Google Scholar 

  • Davies G, Callaghan DP, Gravios U, Jiang W, Hanslow D, Nichol S, Baldock T (2017) Improved treatment of non-stationary conditions and uncertainties in probabilistic models of storm wave climate. Coast Eng 127(June):1–19. https://doi.org/10.1016/j.coastaleng.2017.06.005

    Article  Google Scholar 

  • de Vries H, Katsman C, Drijfhout S (2014) Constructing scenarios of regional sea level change using global temperature pathways. Environ Res Lett 9(115007):1–8

    Google Scholar 

  • de Waal D, van Gelder P (2005) Modelling of extreme wave heights and periods through copulas. Extremes 8:345–356

    Article  Google Scholar 

  • Dean R, Dalrymple R (2001) Coastal processes with engineering applications. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Dean R, Houston J (2016) Determining shoreline response to sea level rise. Coast Eng 114:1–8

    Article  Google Scholar 

  • DeConto RM, Pollard D (2016) Contribution of Antarctica to past and future sea-level rise. Nature 531(7596):591–597. https://doi.org/10.1038/nature17145

    Article  Google Scholar 

  • Dee D, Uppala S, Simmonds A, Berrisford P, Poli P, Kobayashi S, Andrae U et al (2011) The era-interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597

    Article  Google Scholar 

  • Edwards TL, Brandon MA, Durand G, Edwards NR, Golledge NR, Holden PB, Nias IJ, Payne AJ, Ritz C, Wernecke A (2019) Revisiting Antarctic ice loss due to marine ice-cliff instability. Nature 566(7742):58–64. https://doi.org/10.1038/s41586-019-0901-4

    Article  Google Scholar 

  • FitzGerald D, Fenster M, Buynevich BA IV (2008) Coastal impacts due to sea-level rise. Annu Rev Earth Planet Sci 36:601–647

    Article  Google Scholar 

  • Genest C, Rémillard B, Beaudoin D (2009) Goodness-of-fit tests for copulas: a review and a power study. Insur Math Econ 44(2):199–213. https://doi.org/10.1016/j.insmatheco.2007.10.005

    Article  Google Scholar 

  • Hallegatte S, Green C, Nicholls RJ, Corfee-Morlot J (2013) Future flood losses in major coastal cities. Nat Clim Chang 3(9):802–806. https://doi.org/10.1038/nclimate1979

    Article  Google Scholar 

  • Hemer M, Fan Y, Mori N, Semedo A, Wang X (2013) Projected changes in wave climate from a multi-model ensemble. Nat Clim Chang 3:471–476

    Article  Google Scholar 

  • Hinkel J, Nicholls R, Tol R, Wang Z, Hamilton J, Boot G, Vafeidis A, McFadden L, Ganopolski A, Klein R (2013) A global analysis of erosion of sandy beaches and sea level rise: an application of diva. Glob Planet Chang 111:150–158

    Article  Google Scholar 

  • Hinkel J, Jaeger C, Nicholls R, Lowe J, Renn O, Reijun S (2015) Sea-level rise scenarios and coastal risk management. Nat Clim Chang 5:188–191

    Article  Google Scholar 

  • Jongejan R, Ranasinghe R, Wainwright D, Callaghan D, Reyns J (2016) Drawing the line on coastline recession risk. Ocean Coast Manag 122:87–94

    Article  Google Scholar 

  • Joughin I, Smith BE, Medley B (2014) Marine ice sheet collapse potentially under way for the Thwaites Glacier Basin, West Antarctica. Science 344(6185):735–738. https://doi.org/10.1126/science.1249055

    Article  Google Scholar 

  • Jury M (2018) Characteristics and meteorology of Atlantic swells reaching the caribbean. J Coast Res 34(2):400–412

    Article  Google Scholar 

  • Kjerfve B (1981) Tides of the caribbean. J Geophys Res 86(C5):4243–4247

    Article  Google Scholar 

  • Kopp R, Horton R, Little C, Mitrovica J, Oppenheimer M, Rasmussen D, Strauss B, Tebaldi C (2014) Probabilistic 21st and 22nd century sea-level projections at a global network of tide-gauge sites. Earth’s Future 2:383–406

    Article  Google Scholar 

  • Kopp R, DeConto R, Bader D, Hay C, Horton R, Kulp S, Oppenheimer M, Pollard D (2017) Evolving understanding of antarctic ice-sheet physics and ambiguity in probabilistic sea-level projections. Earth’s Future 5:1–17

    Article  Google Scholar 

  • Kriebel D, Dean R (1993) Convolution method for time-dependent beach-profile response. J Waterw Port Coast 119(2):204–226

    Article  Google Scholar 

  • Larson M, Erikson L, Hanson H (2004) An analytical model to predict dune erosion due to wave impact. Coast Eng 51:675–696

    Article  Google Scholar 

  • Larson M, Hoan L, Hanson H (2010) Direct formula to compute wave height and angle at incipient breaking. J Waterw Port Coast 136(2):119–122

    Article  Google Scholar 

  • Le Bars D (2018) Uncertainty in sea level rise projections due to the dependence between contributors. Earth’s Future 6:1–17. https://doi.org/10.1029/2018EF000849

    Article  Google Scholar 

  • Le Bars D, Drijfhout S, de Vries H (2017) A high-end sea level rise probabilitic projection including rapid antarctic ice sheet mass loss. Environ Res Lett 12(044013):1–10

    Google Scholar 

  • Le Cozannet G, Manceau J, Rohmer J (2017) Bounding probabilistic sea-level projections within the framework of the possibility theory. Environ Res Lett 12(014012):1–11

    Google Scholar 

  • Le Cozannet G, Bulteau T, Castelle B, Ranasinghe R, Wöppelmann G, Rohmer J, Bernon N, Idier D, Louisor J, Salas-y Mélia D (2019) Quantifying uncertainties of sandy shoreline change projections as sea level rises. Sci Rep 9(1):1–11. https://doi.org/10.1038/s41598-018-37017-4

    Article  Google Scholar 

  • Levermann A, Winkelmann R, Nowicki S, Fastook J, Frieler K, Greve R, Helmer H, Martin M, Meinshausen M, Mengel M, Payne A, Pollard D, Sato T, Timmermann R, Wang W, Bindschadler R (2014) Projecting antarctic ice discharge using response functions from searise ice-sheet models. Earth Syst Dynam 5:271–293

    Article  Google Scholar 

  • Li F, van Gelder P, Ranasinghe R, Callaghan D, Jongejan R (2014a) Probabilistic modelling of extreme storms along the Dutch coast. Coast Eng 86:1–13. https://doi.org/10.1016/j.coastaleng.2013.12.009

    Article  Google Scholar 

  • Li F, van Gelder P, Vrijling J, Callaghan D, Jongejan R, Ranasinghe R (2014b) Probabilistic estimation of coastal dune erosion and recession by statistical simulation of storm events. Appl Ocean Res 47:53–62. https://doi.org/10.1016/j.apor.2014.01.002

    Article  Google Scholar 

  • Little C, Urban N, Oppenheimer M (2013) Probabilistic framework for assessing the ice sheet contribution to sea level change. PNAS 110(9):3264–3269

    Article  Google Scholar 

  • Luijendijk A, Hagenaars G, Ranasinghe R, Baart F, Donchyts G, Aarninkhof S (2018) The state of the world’s beaches. Sci Rep 8(6641):1–11

    Google Scholar 

  • Marsooli R, Lin N, Emanuel K, Feng K (2019) Climate change exacerbates hurricane flood hazards along US Atlantic and Gulf Coasts in spatially varying patterns. Nat Commun 10(1):1–9. https://doi.org/10.1038/s41467-019-11755-z

    Article  Google Scholar 

  • McGranahan G, Balk D, Anderson B (2007) The rising tide: assessing the risks of climate change and human settlements in low elevation coastal zones. Environ Urban 19(1):17–37

    Article  Google Scholar 

  • McInnes KL, White CJ, Haigh ID, Hemer MA, Hoeke RK, Holbrook NJ, Kiem AS, Oliver EC, Ranasinghe R, Walsh KJ, Westra S, Cox R (2016) Natural hazards in Australia: sea level and coastal extremes. Clim Chang 139(1):69–83. https://doi.org/10.1007/s10584-016-1647-8

    Article  Google Scholar 

  • Munk WH (1949) Surf beats. Transaction American Geophysical Union 30(6)

  • Oppenheimer M, Alley R (2016) How high will the seas rise? Science 354(6318):1375–1376

    Article  Google Scholar 

  • Oppenheimer M, Little CM, Cooke RM (2016) Expert judgement and uncertainty quantification for climate change. Nat Clim Chang 6(5):445–451. https://doi.org/10.1038/nclimate2959

    Article  Google Scholar 

  • Oppenheimer M, Glavovic B H Jr, van de Wal R, Magnan A, Abd-Elgawad A, Cai R, Cifuentes-Jara M, De Conto R, Ghosh T, Hay J, Isla F, Marzeion B, Meyssignac B, Sebesvari Z (2019) IPCC special report on the ocean and cryosphere in a changing climate, in press, chap Sea Level Rise and Implications for Low-Lying Islands, Coasts and Communities

  • Phillips MS, Harley MD, Turner IL, Splinter KD, Cox RJ (2017) Shoreline recovery on wave-dominated sandy coastlines: the role of sandbar morphodynamics and nearshore wave parameters. Mar Geol 385:146–159. https://doi.org/10.1016/j.margeo.2017.01.005

    Article  Google Scholar 

  • Pollard D, DeConto RM, Alley RB (2015) Potential Antarctic Ice Sheet retreat driven by hydrofracturing and ice cliff failure. Earth Planet Sci Lett 412:112–121. https://doi.org/10.1016/j.epsl.2014.12.035

    Article  Google Scholar 

  • Ranasinghe R (2016) Assessing climate change impacts on open sandy coasts: a review. Earth Sci Rev 160:320–332. https://doi.org/10.1016/j.earscirev.2016.07.011

    Article  Google Scholar 

  • Ranasinghe R, Stive MJF (2009) Rising seas and retreating coastlines. Clim Chang 97(3–4):465–468. https://doi.org/10.1007/s10584-009-9593-3

    Article  Google Scholar 

  • Ranasinghe R, Callaghan D, Stive M (2012) Estimating coastal recession due to sea level rise: beyond the bruun rule. Clim Chang 110:561–574

    Article  Google Scholar 

  • Ritz C, Edwards T, Durand G, Payne A, Peyaud V, RCA H (2015) Potential sea-level rise from antarctic ice-sheet instability constrained by observations. Nature 528:115–129

    Article  Google Scholar 

  • Sklar A (1959) Fonctions de reÌ partition aÌ€ n dimensions et leurs marges. Publications and l’Institut de Statistique de Paris, De

    Google Scholar 

  • Slangen ABA, Katsman CA, van de Wal RSW, Vermeersen LLA, Riva REM (2012) Towards regional projections of twenty-first century sea-level change based on IPCC SRES scenarios. Clim Dynam 38(5–6):1191–1209. https://doi.org/10.1007/s00382-011-1057-6

    Article  Google Scholar 

  • Slangen A, Carson M, Katsman C, van der Wal R, Kohl A, Vermeersen L, DStammer (2014) Projecting twenty-first century regional sea-level changes. Clim Chang 124(1–2):317–332

  • Stive MJF (2004) How important is global warming for coastal erosion? Clim Chang 64(1):27–39. https://doi.org/10.1023/B:CLIM.0000024785.91858.1d

    Article  Google Scholar 

  • Stive MJ, Aarninkhof SG, Hamm L, Hanson H, Larson M, Wijnberg KM, Nicholls RJ, Capobianco M (2002) Variability of shore and shoreline evolution. Coast Eng 47(2):211–235. https://doi.org/10.1016/S0378-3839(02)00126-6

    Article  Google Scholar 

  • Tebaldi C, Strauss BH, Zervas CE (2012) Modelling sea level rise impacts on storm surges along US coasts. Environ Res Lett 7(1). https://doi.org/10.1088/1748-9326/7/1/014032

  • Toimil A, Losada IJ, Camus P, Díaz-Simal P (2017) Managing coastal erosion under climate change at the regional scale. Coast Eng 128(July):106–122

    Article  Google Scholar 

  • van Rijn LC (2009) Prediction of dune erosion due to storms. Coast Eng 56(4):441–457. https://doi.org/10.1016/j.coastaleng.2008.10.006

    Article  Google Scholar 

  • Vousdoukas MI, Mentaschi L, Voukouvalas E, Verlaan M, Jevrejeva S, Jackson LP, Feyen L (2018) Global probabilistic projections of extreme sea levels show intensification of coastal flood hazard. Nat Commun 9(1):2360. https://doi.org/10.1038/s41467-018-04692-w

    Article  Google Scholar 

  • Wahl T, Plant NG (2015) Changes in erosion and flooding risk due to long-term and cyclic oceanographic trends. Geophys Res Lett 42(8):2943–2950. https://doi.org/10.1002/2015GL063876

    Article  Google Scholar 

  • Wahl T, Plant N, Long J (2016) Probabilistic assessment of erosion and flooding risk in the northern gulf of Mexico. J Geophys Res C Oceans 121:3029–3042

    Article  Google Scholar 

  • Yates ML, Guza RT, O’Reilly WC (2009) Equilibrium shoreline response: observations and modeling. J Geophys Res C Oceans 114(9):1–16. https://doi.org/10.1029/2009JC005359

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Arjen Luijendijk for providing the satellite-derived shoreline positions of the Sint Maarten beaches. We further would like to acknowledge Ali Dastgheib for fruitful discussions during the research. RR is supported by the AXA Research fund and the Deltares Strategic Research Programme Coastal and Offshore Engineering.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jasper Verschuur.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 848 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verschuur, J., Le Bars, D., Katsman, C.A. et al. Implications of ambiguity in Antarctic ice sheet dynamics for future coastal erosion estimates: a probabilistic assessment. Climatic Change 162, 859–876 (2020). https://doi.org/10.1007/s10584-020-02769-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10584-020-02769-4

Keywords

Navigation