Skip to main content
Log in

Effect of structural and temperature variations on perovskite/Mg2Si based monolithic tandem solar cell structure

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Perovskite being a wide bandgap material has shown profound impact as an active material for the use of top cell in the tandem solar cell. However, finding a suitable low-bandgap material for the bottom cell of the perovskite associated tandem solar cell has always been a concern for researchers. Over the last decade, several materials for designing of the bottom cell have been reported as a combination to perovskite for superior efficiency. In this paper, a novel perovskite/Mg2Si based monolithic tandem solar cell is reported through numerical simulations using AFROS-HET v2.5. The reported device shows 25% efficiency prior to optimization. However, the structure of the device has been optimized to obtain better results in terms of efficiency by varying active layer thickness and using different electron/hole transport materials. About 8% improvement in efficiency has been noticed by the selection of optimum design parameters. Further, to account for the temperature reliability of the proposed design, the device is simulated for a temperature range of 300 K–450 K. This study highlights a drop-in open-circuit voltage (VOC) by a factor of about 0.1 V with an increase in temperature by about 50 K. Results clearly establish that structural and temperature variations significantly affect overall device performance. Results have been suitably analyzed so as to set a roadmap for further research work in this direction and explore the best of the characteristics of this unique tandem solar cell structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. S. Chu, A. Majumdar, Opportunities and challenges for a sustainable energy future. Nature 488, 294 (2012)

    Article  ADS  Google Scholar 

  2. A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc 131, 6050–6051 (2009). 2009/05/06 2009

    Article  Google Scholar 

  3. E.H. Jung, N.J. Jeon, E.Y. Park, C.S. Moon, T.J. Shin, T.-Y. Yang et al., Efficient, stable and scalable perovskite solar cells using poly (3-hexylthiophene). Nature 567, 511 (2019)

    Article  ADS  Google Scholar 

  4. Q. Shen, Y. Ogomi, J. Chang, S. Tsukamoto, K. Kukihara, T. Oshima et al., Charge transfer and recombination at the metal oxide/CH 3 NH 3 PbClI 2/spiro-OMeTAD interfaces: uncovering the detailed mechanism behind high efficiency solar cells. Phys. Chem. Chem. Phys. 16, 19984–19992 (2014)

    Article  Google Scholar 

  5. J. Madan, Shivani, R. Pandey, R. Sharma, Device simulation of 17.3% efficient lead-free all-perovskite tandem solar cell. Sol. Energy 197, 212–221 (2020). 2020/02/01/ 2020

    Article  ADS  Google Scholar 

  6. S.S. Mali, C.K. Hong, pin/nip type planar hybrid structure of highly efficient perovskite solar cells towards improved air stability: synthetic strategies and the role of p-type hole transport layer (HTL) and n-type electron transport layer (ETL) metal oxides. Nanoscale 8, 10528–10540 (2016)

    Article  ADS  Google Scholar 

  7. F. Azri, A. Meftah, N. Sengouga, A. Meftah, Electron and hole transport layers optimization by numerical simulation of a perovskite solar cell. Sol. Energy 181, 372–378 (2019). 2019/03/15/ 2019

    Article  ADS  Google Scholar 

  8. J. Burdick, T. Glatfelter, Spectral response and I–V measurements of tandem amorphous-silicon alloy solar cells. Solar Cells 18, 301–314 (1986)

    Article  Google Scholar 

  9. F. Sahli, J. Werner, B. A. Kamino, M. Bräuninger, R. Monnard, B. Paviet-Salomon, et al., (2018) "Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency, Nature Materials, 2018/06/11 2018

  10. R. Pandey, A. Singla, J. Madan, R. Sharma, R. Chaujar, Toward the design of monolithic 23.1% efficient hysteresis and moisture free perovskite/c-Si HJ tandem solar cell: a numerical simulation study. J. Micromech. Microeng. 29, 064001 (2019)

    Article  ADS  Google Scholar 

  11. J. Liu, Y. Yao, S. Xiao, X. Gu, Review of status developments of high-efficiency crystalline silicon solar cells. J. Phys. D 51, 123001 (2018). 2018/02/20 2018

    Article  ADS  Google Scholar 

  12. R. Pandey, R. Chaujar, Numerical simulation of rear contact silicon solar cell with a novel front surface design for the suppression of interface recombination and improved absorption. Curr. Appl. Phys. 16, 1581–1587 (2016). 12// 2016

    Article  ADS  Google Scholar 

  13. Q. Deng, Z. Wang, S. Wang, G. Shao, Simulation of planar Si/Mg2Si/Si pin heterojunction solar cells for high efficiency. Sol. Energy 158, 654–662 (2017)

    Article  ADS  Google Scholar 

  14. D. Zhao, Y. Yu, C. Wang, W. Liao, N. Shrestha, C.R. Grice et al., Low-bandgap mixed tin–lead iodide perovskite absorbers with long carrier lifetimes for all-perovskite tandem solar cells. Nat. Energy 2, 17018 (2017)

    Article  ADS  Google Scholar 

  15. N. Khoshsirat, N.A.M. Yunus, M.N. Hamidon, S. Shafie, N. Amin, Analysis of absorber layer properties effect on CIGS solar cell performance using SCAPS. Optik 126, 681–686 (2015)

    Article  ADS  Google Scholar 

  16. Y. Ren, J.J. Scragg, C. Frisk, J.K. Larsen, S.Y. Li, C. Platzer-Björkman, Influence of the Cu2ZnSnS4 absorber thickness on thin film solar cells. Phys. Status Solidi (a) 212, 2889–2896 (2015)

    Article  ADS  Google Scholar 

  17. R. Pandey, A.P. Saini, R. Chaujar, Numerical simulations: Toward the design of 18.6% efficient and stable perovskite solar cell using reduced cerium oxide based ETL. Vacuum 159, 173–181 (2019)

    Article  ADS  Google Scholar 

  18. C. Momblona, L. Gil-Escrig, E. Bandiello, E.M. Hutter, M. Sessolo, K. Lederer et al., Efficient vacuum deposited pin and nip perovskite solar cells employing doped charge transport layers. Energy Environ. Sci. 9, 3456–3463 (2016)

    Article  Google Scholar 

  19. T.S. Sherkar, C. Momblona, L. Gil-Escrig, H.J. Bolink, L.J.A. Koster, Improving perovskite solar cells: Insights from a validated device model. Adv. Energy Mater. 7, 1602432 (2017)

    Article  Google Scholar 

  20. J. Zheng, H.-S. Kwok, Temperature dependence of the optical properties of semiconductor microcrystals. JOSA B 9, 2047–2053 (1992)

    Article  ADS  Google Scholar 

  21. R.L. Milot, G.E. Eperon, H.J. Snaith, M.B. Johnston, L.M. Herz, Temperature-dependent charge-carrier dynamics in CH3NH3PbI3 perovskite thin films. Adv. Func. Mater. 25, 6218–6227 (2015)

    Article  Google Scholar 

  22. V.A. Rajkumar, C. Weijers, M.G. Debije, Distribution of absorbed heat in luminescent solar concentrator lightguides and effect on temperatures of mounted photovoltaic cells. Renew. Energy 80, 308–315 (2015)

    Article  Google Scholar 

  23. R.H. van Leest, P. Mulder, N. Gruginskie, S.C. van Laar, G.J. Bauhuis, H. Cheun et al., Temperature-induced degradation of thin-film III–V solar cells for space applications. IEEE J. Photovoltaics 7, 702–708 (2017)

    Article  Google Scholar 

  24. P. Singh, N.M. Ravindra, Temperature dependence of solar cell performance—an analysis. Sol. Energy Mater. Sol. Cells 101, 36–45 (2012)

    Article  Google Scholar 

  25. R. Varache, C. Leendertz, M. Gueunier-Farret, J. Haschke, D. Muñoz, L. Korte, Investigation of selective junctions using a newly developed tunnel current model for solar cell applications. Sol. Energy Mater. Sol. Cells 141, 14–23 (2015)

    Article  Google Scholar 

  26. Y. Yao, X. Xu, X. Zhang, H. Zhou, X. Gu, S. Xiao, Enhanced efficiency in bifacial HIT solar cells by gradient doping with AFORS-HET simulation. Mater. Sci. Semiconductor Process. 77, 16–23 (2018). 2018/04/01/ 2018

    Article  Google Scholar 

  27. A. Nakanishi, Y. Takiguchi, S. Miyajima, Device simulation of CH3NH3PbI3 perovskite/heterojunction crystalline silicon monolithic tandem solar cells using an n-type a-Si: H/p-type µc-Si1–xOx: H tunnel junction. Phys. Status Solidi (a) 213, 1997–2002 (2016)

    Article  ADS  Google Scholar 

  28. L.J. Phillips, A.M. Rashed, R.E. Treharne, J. Kay, P. Yates, I.Z. Mitrovic et al., Dispersion relation data for methylammonium lead triiodide perovskite deposited on a (100) silicon wafer using a two-step vapour-phase reaction process. Data Brief 5, 926–928 (2015)

    Article  Google Scholar 

  29. T. Kato, Y. Sago, H. Fujiwara, Optoelectronic properties of Mg2Si semiconducting layers with high absorption coefficients. J. Appl. Phys. 110, 063723 (2011)

    Article  ADS  Google Scholar 

  30. W. Li, W. Li, Y. Feng, C. Yang, Numerical analysis of the back interface for high efficiency wide band gap chalcopyrite solar cells. Sol. Energy 180, 207–215 (2019)

    Article  ADS  Google Scholar 

  31. R. Pandey, R. Chaujar, Technology computer aided design of 29.5% efficient perovskite/interdigitated back contact silicon heterojunction mechanically stacked tandem solar cell for energy-efficient applications. J. Photonics Energy 7, 022503–022503 (2017)

    Article  ADS  Google Scholar 

  32. S. N. R. Nanduri, M. K. Siddiki, G. M. Chaudhry, and Y. Z. Alharthi, Numerical simulation and performance optimization of perovskite solar cell, in 2017 IEEE 44th Photovoltaic Specialist Conference (PVSC), 2017, pp. 1018–1021.

  33. S.M. Sze, Semiconductor devices: physics and technology (Wiley, Hoboken, 2008)

    Google Scholar 

  34. T. Minemoto, M. Murata, Theoretical analysis on effect of band offsets in perovskite solar cells. Sol. Energy Mater. Solar Cells 133, 8–14 (2015)

    Article  Google Scholar 

Download references

Acknowledgment

Rahul Pandey is grateful to SERB, Ministry of Science and Technology, Government of India, for sanction of project grant under the Start-up Research Grant (SRG) scheme with file number: SRG/2019/000941. The team of authors acknowledges the time spent by all other members of VLSI Center of Excellence, Chitkara University, Punjab, India, for useful discussions to give a focused direction to this research work. Permission from the administration of Chitkara University in providing all the support to carry out this research work is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jaya Madan, Rahul Pandey or Rajnish Sharma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pathania, A., Madan, J., Pandey, R. et al. Effect of structural and temperature variations on perovskite/Mg2Si based monolithic tandem solar cell structure. Appl. Phys. A 126, 580 (2020). https://doi.org/10.1007/s00339-020-03758-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03758-1

Keywords

Navigation