Skip to main content
Log in

Construction of an Efficient Nicotinate Dehydrogenase Expression System in Comamonas testosteroni CNB-2 with Multi-level N-Terminal Engineering

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Nicotinate dehydrogenase (NDHase) is a membrane protein with three subunits (ndhS, ndhL, and ndhM), which is difficult to express in a functional form using common hosts such as Escherichia coli, Bacillus subtilis, or Pichia pastoris. Comamonas testosteroni is a suitable microbial chassis for expressing multi-subunit membrane proteins. However, the expression of NDHase in C. testosteroni is extremely low. We have developed a systematic approach to create an efficient protein expression system in C. testosteroni CNB-2 using multi-level N-terminal engineering. We selected a strong promoter for the Mmp1 system that enables control of transcriptional strength in unconventional bacteria. This enhanced the expression of a green fluorescent reporter protein threefold. Following modification of the N-terminal Shine–Dalgarno sequence and rearrangement of amino acid sequence in the starting area of the gene encoding NDHase, enzyme activity increased from 90.6 to 165 U/L. These optimized N-terminal Shine–Dalgarno and amino acid sequences were used to enhance the expression of ndhL subunit and improve the balance expression of three subunits of NDHase, resulting in enzyme activity of 192 U/L that far surpasses the previously reported level. These results highlight a promising strategy for the development of other heterologous expression systems for challenging proteins using unconventional bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chen, R. (2012). Bacterial expression systems for recombinant protein production: E. coli and beyond. Biotechnology Advances, 30(5), 1102–1107.

    Article  CAS  PubMed  Google Scholar 

  2. Wurm, F. M. (2004). Production of recombinant protein therapeutics in cultivated mammalian cells. Nature Biotechnology, 22(11), 1393–1398.

    Article  CAS  PubMed  Google Scholar 

  3. Susanne, P., & Harwood, C. R. (2010). Heterologous protein secretion by Bacillus species from the cradle to the grave. Advances in Applied Microbiology, 73(10), 1–25.

    Google Scholar 

  4. Sue, M. P., et al. (2005). Heterologous protein production using the Pichia pastoris expression system. Yeast, 22(4), 249–270.

    Article  Google Scholar 

  5. Choi, J. H., Keum, K. C., & Sang, Y. L. (2006). Production of recombinant proteins by high cell density culture of Escherichia coli. Chemical Engineering Science, 61(3), 876–885.

    Article  CAS  Google Scholar 

  6. Jimenez, J. I., Canales, A., Jimenez-Barbero, J., Ginalski, K., Rychlewski, L., Garcia, J. L., & Diaz, E. (2008). Deciphering the genetic determinants for aerobic nicotinic acid degradation: the nic cluster from Pseudomonas putida KT2440. Proceedings of the National Academy of Sciences, 105(32), 11329–11334.

    Article  CAS  Google Scholar 

  7. Rosano, G. L., & Ceccarelli, E. A. (2014). Recombinant protein expression in Escherichia coli: advances and challenges. Frontiers in Microbiology, 5(172), 1–17.

    Google Scholar 

  8. Lu, Z., et al. (2020). Efficient heterologous expression of nicotinate dehydrogenase in Comamonas testosteroni CNB-2 with transcriptional, folding enhancementstrategy. Enzyme and Microbial Technology, 134. Available from: www.sciencedirect.com. Accessed November 21, 2019, 109478.

    Article  CAS  PubMed  Google Scholar 

  9. Abraham, J. E. M., & Simon, G. L. (2007). Comamonas testosteroni bacteremia: a case report and review of the literature. Infectious Diseases in Clinical Practice, 15(4), 272–273.

    Article  Google Scholar 

  10. Yasuda, M., Sakamoto, T., Sashida, R., Ueda, M., Morimoto, Y., & Nagasawa, T. (1995). Microbial hydroxylation of 3-cyanopyridine to 3-cyano-6-hydroxypyridine. Bioscience Biotechnology & Biochemistry, 59(4), 572–575.

    Article  CAS  Google Scholar 

  11. Kaiser, J. P., Feng, Y., & Bollag, J. M. (1996). Microbial metabolism of pyridine, quinoline, acridine, and their derivatives under aerobic and anaerobic conditions. Microbiological Reviews, 60(3), 483–498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Horemans, B., et al. (2017). Carbon catabolite repression and cell dispersal affects degradation of the xenobiotic compound 3,4-dichloroaniline in Comamonas testosteroni WDL7 biofilms. FEMS Microbiology Ecology, 93(3), 1–8.

    Google Scholar 

  13. Tang, Q., Lu, T., & Liu, S. J. (2018). Engineering the soil bacterium Comamonas testosteroni CNB-1: plasmid curing and genetic manipulation. Biochemical Engineering Journal, 133, 74–82.

    Article  CAS  Google Scholar 

  14. Tang, et al. (2018). Developing a synthetic biology toolkit for Comamonas testosteroni, an emerging cellular chassis for bioremediation. ACS Synthetic Biology, 7(7), 1753–1762.

    Article  CAS  PubMed  Google Scholar 

  15. Goodman, D. B., Church, G. M., & Kosuri, S. (2013). Causes and effects of N-terminal codon bias in bacterial genes. Science, 342(6157), 475–479.

    Article  CAS  PubMed  Google Scholar 

  16. Bivona, L., Zou, Z., Stutzman, N., & Sun, P. D. (2010). Influence of the second amino acid on recombinant protein expression. Protein Expression and Purification, 74(2), 248–256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yang, Z., Pei, X., Xu, G., Wu, J., & Yang, L. (2018). N-terminal engineering of overlapping genes in the nitrile hydratase gene cluster improved its activity. Enzyme and Microbial Technology, 117, 9–14.

    Article  CAS  PubMed  Google Scholar 

  18. Nishit, et al. (2018). Construction and characterization of mutated LEA peptides in Escherichia coli to develop an efficient protein expression system. Journal of Molecular Recognition, 31, 1–6.

    Google Scholar 

  19. Berg, L., et al. (2010). The expression of recombinant genes in Escherichia coli can be strongly stimulated at the transcript production level by mutating the DNA-region corresponding to the 5′-untranslated part of mRNA. Microbial Biotechnology, 2(3), 379–389.

    Article  Google Scholar 

  20. Ojima-Kato, T., Nagai, S., & Nakano, H. (2017). N-terminal SKIK peptide tag markedly improves expression of difficult-to-express proteins in Escherichia coli and Saccharomyces cerevisiae. Journal of Bioscience and Bioengineering, 123(5), 1–7.

    Article  Google Scholar 

  21. Boël, G., Letso, R., Neely, H., Price, W. N., Wong, K. H., Su, M., Luff, J. D., Valecha, M., Everett, J. K., Acton, T. B., Xiao, R., Montelione, G. T., Aalberts, D. P., & Hunt, J. F. (2016). Codon influence on protein expression in E. coli correlates with mRNA levels. Nature, 529(7586), 358–363.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Yang, Y., Chen, T., Ma, P., Shang, G., Dai, Y., & Yuan, S. (2010). Cloning, expression and functional analysis of nicotinate dehydrogenase gene cluster from Comamonas testosteroni JA1 that can hydroxylate 3-cyanopyridine. Biodegradation, 21(4), 593–602.

    Article  CAS  PubMed  Google Scholar 

  23. Ma, Y., et al. (2009). The complete genome of Comamonas testosteroni reveals its genetic adaptations to changing environments. Applied and Environmental Microbiology, 75(21), 6812–6819.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Schweizer, H. P. (2001). Vectors to express foreign genes and techniques to monitor gene expression in Pseudomonads. Current Opinion in Biotechnology, 12(5), 439–445.

    Article  CAS  PubMed  Google Scholar 

  25. Zuker, M. (2003). Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Research, 31(13), 3406–3415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Labes, M., Pühler, A., & Simon, R. (1990). A new family of RSF1010-derived expression and lac-fusion broad-host-range vectors for Gram-negative bacteria. Gene, 89(1), 37–46.

    Article  CAS  PubMed  Google Scholar 

  27. Kim, K.-J., Kim, H. E., Lee, K. H., Han, W., Yi, M. J., Jeong, J., & Oh, B. H. (2004). Two-promoter vector is highly efficient for overproduction of protein complexes. Protein Science, 13(6), 1698–1703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 21676240) and the National Key R&D Program of China (No. 2019YFA09005000). We are grateful for the donation of PMmP1-LacO- sfgfp-p321 plasmid by Professor Guoqiang Chen (Center for Synthetic and Systems Biology, Tsinghua University, China).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Ping Wu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, ZH., Yang, LR. & Wu, JP. Construction of an Efficient Nicotinate Dehydrogenase Expression System in Comamonas testosteroni CNB-2 with Multi-level N-Terminal Engineering. Appl Biochem Biotechnol 192, 923–934 (2020). https://doi.org/10.1007/s12010-020-03354-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03354-2

Keywords

Navigation