Skip to main content
Log in

Subgraph Isomorphism on Graph Classes that Exclude a Substructure

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

We study Subgraph Isomorphism on graph classes defined by a fixed forbidden graph. Although there are several ways for forbidding a graph, we observe that it is reasonable to focus on the minor relation since other well-known relations lead to either trivial or equivalent problems. When the forbidden minor is connected, we present a near dichotomy of the complexity of Subgraph Isomorphism with respect to the forbidden minor, where the only unsettled case is \(P_{5}\), the path of five vertices. We then also consider the general case of possibly disconnected forbidden minors. We show fixed-parameter tractable cases and randomized XP-time solvable cases parameterized by the size of the forbidden minor H. We also show that by slightly generalizing the tractable cases, the problem becomes NP-complete. All unsettle cases are equivalent to \(P_{5}\) or the disjoint union of two \(P_{5}\)’s. As a byproduct, we show that Subgraph Isomorphism is fixed-parameter tractable parameterized by vertex integrity. Using similar techniques, we also observe that Subgraph Isomorphism is fixed-parameter tractable parameterized by neighborhood diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. We assume that the readers are familiar with the concept of parameterized complexity. See e.g. [6] for basic definitions omitted here.

References

  1. Alon, N., Yuster, R., Zwick, U.: Color-coding. J. ACM 42(4), 844–856 (1995). https://doi.org/10.1145/210332.210337

    Article  MathSciNet  MATH  Google Scholar 

  2. Barefoot, C.A., Entringer, R.C., Swart, H.C.: Vulnerability in graphs—a comparative survey. J. Combin. Math. Combin. Comput. 1, 13–22 (1987)

    MathSciNet  MATH  Google Scholar 

  3. Bodlaender, H.L, Nederlof, J., van der Zanden, T.C.: Subexponential time algorithms for embedding \(H\)-minor free graphs. In: ICALP 2016, vol. 55. LIPIcs, pp. 9:1–9:14 (2016). https://doi.org/10.4230/LIPIcs.ICALP.2016.9

  4. Bonsma, P.S.: Surface split decompositions and subgraph isomorphism in graphs on surfaces. In: STACS 2012, vol. 14. LIPIcs, pp. 531–542 (2012). https://doi.org/10.4230/LIPIcs.STACS.2012.531

  5. Cygan, M., Fomin, F.V., Golovnev, A., Kulikov, A.S., Mihajlin, I., Pachocki, J., Socała, A.: Tight lower bounds on graph embedding problems. J. ACM 64(3), 18:1–18:22 (2017). https://doi.org/10.1145/3051094

    Article  MathSciNet  MATH  Google Scholar 

  6. Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, New York (2015)

    MATH  Google Scholar 

  7. Damaschke, P.: Induced subgraph isomorphism for cographs in NP-complete. In: WG 1990, vol. 484. LNCS, pp. 72–78 (1990). https://doi.org/10.1007/3-540-53832-1_32

  8. Dorn, F.: Planar subgraph isomorphism revisited. In: STACS 2010, vol. 5. LIPIcs, pp. 263–274 (2010). https://doi.org/10.4230/LIPIcs.STACS.2010.2460

  9. Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and completeness II: on completeness for W[1]. Theor. Comput. Sci. 141(1&2), 109–131 (1995). https://doi.org/10.1016/0304-3975(94)00097-3

    Article  MathSciNet  MATH  Google Scholar 

  10. Drange, P.G., Dregi, M.S., van’t Hof, P.: On the computational complexity of vertex integrity and component order connectivity. Algorithmica 76(4), 1181–1202 (2016). https://doi.org/10.1007/s00453-016-0127-x

    Article  MathSciNet  MATH  Google Scholar 

  11. Eppstein, D.: Subgraph isomorphism in planar graphs and related problems. J. Gr. Algorithms Appl. 3(3), 1–27 (1999). https://doi.org/10.7155/jgaa.00014

    Article  MathSciNet  MATH  Google Scholar 

  12. Fellows, M.R., Kratochvíl, J., Middendorf, M., Pfeiffer, F.: The complexity of induced minors and related problems. Algorithmica 13(3), 266–282 (1995). https://doi.org/10.1007/BF01190507

    Article  MathSciNet  MATH  Google Scholar 

  13. Frank, A., Tardos, É.: An application of simultaneous diophantine approximation in combinatorial optimization. Combinatorica 7(1), 49–65 (1987). https://doi.org/10.1007/BF02579200

    Article  MathSciNet  MATH  Google Scholar 

  14. Ganian, R.: Improving vertex cover as a graph parameter. Discrete Math. Theor. Comput. Sci. 17(2), 77–100 (2015)

    MathSciNet  MATH  Google Scholar 

  15. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, New York (1979)

    MATH  Google Scholar 

  16. Gupta, A., Nishimura, N.: The complexity of subgraph isomorphism for classes of partial \(k\)-trees. Theor. Comput. Sci. 164(1&2), 287–298 (1996). https://doi.org/10.1016/0304-3975(96)00046-1

    Article  MathSciNet  MATH  Google Scholar 

  17. Hajiaghayi, M.T., Nishimura, N.: Subgraph isomorphism, log-bounded fragmentation, and graphs of (locally) bounded treewidth. J. Comput. Syst. Sci. 73(5), 755–768 (2007). https://doi.org/10.1016/j.jcss.2007.01.003

    Article  MathSciNet  MATH  Google Scholar 

  18. Jansen, B.M.P., Marx, D.: Characterizing the easy-to-find subgraphs from the viewpoint of polynomial-time algorithms, kernels, and turing kernels. SODA 2015, 616–629 (2015). https://doi.org/10.1137/1.9781611973730.42

    Article  MathSciNet  MATH  Google Scholar 

  19. Kannan, R.: Minkowski’s convex body theorem and integer programming. Math. Oper. Res. 12(3), 415–440 (1987). https://doi.org/10.1287/moor.12.3.415

    Article  MathSciNet  MATH  Google Scholar 

  20. Kijima, S., Otachi, Y., Saitoh, T., Uno, T.: Subgraph isomorphism in graph classes. Discrete Math. 312(21), 3164–3173 (2012). https://doi.org/10.1016/j.disc.2012.07.010

    Article  MathSciNet  MATH  Google Scholar 

  21. Kiyomi, M., Otachi, Y.: Finding a chain graph in a bipartite permutation graph. Inf. Process. Lett. 116(9), 569–573 (2016). https://doi.org/10.1016/j.ipl.2016.04.006

    Article  MathSciNet  MATH  Google Scholar 

  22. Konagaya, M., Otachi, Y., Uehara, R.: Polynomial-time algorithms for subgraph isomorphism in small graph classes of perfect graphs. Discrete Appl. Math. 199, 37–45 (2016). https://doi.org/10.1016/j.dam.2015.01.040

    Article  MathSciNet  MATH  Google Scholar 

  23. Lampis, M.: Algorithmic meta-theorems for restrictions of treewidth. Algorithmica 64(1), 19–37 (2012). https://doi.org/10.1007/s00453-011-9554-x

    Article  MathSciNet  MATH  Google Scholar 

  24. Lenstra Jr., H.W.: Integer programming with a fixed number of variables. Math. Oper. Res. 8(4), 538–548 (1983). https://doi.org/10.1287/moor.8.4.538

    Article  MathSciNet  MATH  Google Scholar 

  25. Lingas, A.: Subgraph isomorphism for biconnected outerplanar graphs in cubic time. Theor. Comput. Sci. 63(3), 295–302 (1989). https://doi.org/10.1016/0304-3975(89)90011-X

    Article  MathSciNet  MATH  Google Scholar 

  26. Marx, D.: List edge multicoloring in graphs with few cycles. Inf. Process. Lett. 89(2), 85–90 (2004). https://doi.org/10.1016/j.ipl.2003.09.016

    Article  MathSciNet  MATH  Google Scholar 

  27. Marx, D., Pilipczuk, M.: Everything you always wanted to know about the parameterized complexity of subgraph isomorphism (but were afraid to ask). In: STACS 2014, vol. 25. LIPIcs, pp. 542–553 (2014). https://doi.org/10.4230/LIPIcs.STACS.2014.542

  28. Matoušek, J., Thomas, R.: On the complexity of finding iso- and other morphisms for partial \(k\)-trees. Discrete Math. 108(1–3), 343–364 (1992). https://doi.org/10.1016/0012-365X(92)90687-B

    Article  MathSciNet  MATH  Google Scholar 

  29. Matula, D.W.: Subtree isomorphism in \({O(n^{5/2})}\). In: Alspach, B., Hell, P., Miller, D.J. (eds.) Algorithmic Aspects of Combinatorics. Annals of Discrete Mathematics, vol. 2, pp. 91–106. Elsevier, Amsterdam (1978)

    Google Scholar 

  30. McConnell, R.M., Spinrad, J.P.: Modular decomposition and transitive orientation. Discrete Math. 201(1–3), 189–241 (1999). https://doi.org/10.1016/S0012-365X(98)00319-7

    Article  MathSciNet  MATH  Google Scholar 

  31. Mulmuley, K., Vazirani, U.V., Vazirani, V.V.: Matching is as easy as matrix inversion. Combinatorica 7(1), 105–113 (1987). https://doi.org/10.1007/BF02579206

    Article  MathSciNet  MATH  Google Scholar 

  32. Nesetril, J., de Mendez, P.O.: Sparsity-Graphs, Structures, and Algorithms, vol 28. Algorithms and Combinatorics. Springer, New York (2012). https://doi.org/10.1007/978-3-642-27875-4

  33. Poljak, S.: A note on stable sets and colorings of graphs. Commentationes Mathematicae Universitatis Carolinae 15(2), 307–309 (1974)

    MathSciNet  MATH  Google Scholar 

  34. Tedder, M., Corneil, D.G, Habib, M., Paul, C.: Simpler linear-time modular decomposition via recursive factorizing permutations. In: ICALP 2008 (1), vol. 5125. LNCS, pp. 634–645 (2008). https://doi.org/10.1007/978-3-540-70575-8_52

Download references

Funding

Partially supported by NETWORKS (the Networks project, funded by the Netherlands Organization for Scientific Research NWO), the ELC project (the project Exploring the Limits of Computation, funded by MEXT), JSPS/MEXT KAKENHI Grant Numbers JP24106004, JP18K11168, JP18K11169, JP18H04091, JP18H06469, JP15K00009, JST CREST Grant Number JPMJCR1402, and Kayamori Foundation of Informational Science Advancement. The authors thank Momoko Hayamizu, Kenji Kashiwabara, Hirotaka Ono, Ryuhei Uehara, and Koichi Yamazaki for helpful discussions. The authors are grateful to the anonymous reviewer of an earlier version of this paper who pointed out a gap in a proof. A preliminary version appeared in the proceedings of the 11th International Conference on Algorithms and Complexity (CIAC 2019), Lecture Notes in Computer Science 11485 (2019) 87–98.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yota Otachi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bodlaender, H.L., Hanaka, T., Kobayashi, Y. et al. Subgraph Isomorphism on Graph Classes that Exclude a Substructure. Algorithmica 82, 3566–3587 (2020). https://doi.org/10.1007/s00453-020-00737-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-020-00737-z

Keywords

Navigation