Skip to main content
Log in

Large eddy simulation of inertial particles dispersion in a turbulent gas-particle channel flow bounded by rough walls

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The purpose of this paper is to understand the capability and consistency of large eddy simulation (LES) in Eulerian–Lagrangian studies aimed at predicting inertial particle dispersion in turbulent wall-bounded flows, in the absence of ad hoc closure models in the Lagrangian equations of particle motion. The degree of improvement granted by LES models is object of debate, in terms of both accurate prediction of particle accumulation and local particle segregation; therefore, we assessed the accuracy in the prediction of the particle velocity statistics by comparison against direct numerical simulation (DNS) of a finer computational mesh, under both one-way and two-way coupling regimes. We performed DNS and LES at friction Reynolds number \(\hbox {Re}_{\tau }=180\) in smooth and rough channels, tracking particles with different inertia, with the aim to conduct a parametric study that examines the accuracy of particle statistics obtained from LES computations. The issue has been widely analysed in turbulent flow bounded by smooth walls, whereas the effect of rough boundaries on momentum coupled two-phase flows has been much less investigated until now. The action of the roughness of the wall is studied in terms of both turbulence modification and particle interaction with the wall surface due to particle rebounding off the solid boundary, without the introduction of a virtual rebound model. Results show that resolved LES adequately predicts particle-induced changes in both fluid and particle statistics in rough channels, at least for the range of parameters considered here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Eaton, J.K., Fessler, J.R.: Preferential concentration of particles by turbulence. Int. J. Multiph. Flow 20(1), 169–209 (1994)

    MATH  Google Scholar 

  2. Kaftori, D., Hetsroni, G., Banerjee, S.: Particle behaviour in the turbulent boundary layer I. Motion, deposition and entrainment. Phys. Fluids 7(5), 1095–1106 (1995)

    Google Scholar 

  3. Rouson, D.W.I., Eaton, J.K.: On the preferential concentration of solid particles in turbulent channel flow. J. Fluid Mech. 428, 149–169 (2001)

    MATH  Google Scholar 

  4. Marchioli, C., Soldati, A.: Mechanisms for particle transfer and segregation in a turbulent boundary layer. J. Fluid Mech. 468, 283–315 (2002)

    MATH  Google Scholar 

  5. Bec, J., Biferale, L., Cencini, M., Lanotte, A., Musacchio, S., Toschi, F.: Heavy particle concentration in turbulence at dissipative and inertial scale. Phys. Rev. Lett. 98, 085402 (2007)

    Google Scholar 

  6. Maxey, M.R., Riley, J.J.: Equation of motion for a small rigid sphere in a nonuniform flow. Phys. Fluids 26, 883–889 (1983)

    MATH  Google Scholar 

  7. Balachandar, S., Eaton, J.K.: Turbulent dispersed multiphase flow. Ann. Rev. Fluid Mech. 42, 111–133 (2001)

    MATH  Google Scholar 

  8. Pope, S.B.: Turbulent Flows. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  9. Sagaut, P.: Large Eddy Simulation for Incompressible Flows. Springer, Berlin (2001)

    MATH  Google Scholar 

  10. Zang, Y., Street, R.L., Koseff, J.R.: A dynamic mixed subgride-scale model and its application to turbulent recirculating flows. Phys. Fluids 12, 3186–3196 (1993)

    MATH  Google Scholar 

  11. Armenio, V., Piomelli, U., Fiorotto, V.: Effect of the subgrid scales on particle motion. Phys. Fluids 11, 3030–3042 (1999)

    MATH  Google Scholar 

  12. Yamamoto, Y., Potthoff, M., Tanaka, T., Kajishima, T., Tsuji, Y.: Large-eddy simulation of turbulent gas-particle flow in a vertical channel: effect of considering inter-particle collisions. J. Fluid Mech. 442, 303–334 (2001)

    MATH  Google Scholar 

  13. Pozorsky J., Apte S. V., Raman V.: Filtered particle tracking for dispersed two-phase turbulent flow. In: Proceedings of the Summer Program Summer Program, Center for Turbulence Research (2004)

  14. Shotorban, B., Mashayek, F.: Modeling subgrid-scale effect on particles byfapproximate deconvolution. Phys. Fluids 17, 08701 (2005)

    MATH  Google Scholar 

  15. Fede, P., Simonin, O.: Numerical study of the subgrid fluid turbulence effects on the statistics of heavy colliding particles. Phys. Fluids 18, 045103 (2006)

    Google Scholar 

  16. Kuerten, J.G.M., Vreman, A.W.: Can turbophoresis be predicted by large-eddy simulation? Phys. Fluids 17, 011701 (2005)

    MATH  Google Scholar 

  17. Kuerten, J.G.M.: Subgrid modeling in particle-laden channel flow. Phys. Fluids 18, 025108 (2006)

    Google Scholar 

  18. Marchioli, C., Salvetti, M.V., Soldati, A.: Appraisal of energy recovering sub-grid scale models for large-eddy simulation of turbulent dispersed flows. Acta Mech. 201, 277–296 (2008)

    MATH  Google Scholar 

  19. Bianco, F., Chibbaro, S., Marchioli, C., Salvetti, M.V., Soldati, A.: Intrinsic filtering errors of Lagrangian particle tracking in LES flow fields. Phys. Fluids 24, 045103 (2012)

    Google Scholar 

  20. Geurts, B.J., Kuerten, J.G.M.: Ideal stochastic forcing for the motion of particles in large-eddy simulation extracted from direct numerical simulation of turbulent channel flow. Phys. Fluids 24, 081702 (2012)

    Google Scholar 

  21. Marchioli, C., Salvetti, M.V., Soldati, A.: Some issues concerning large-eddy simulation of inertial particle dispersion in turbulent bounded flows. Phys. Fluids 20, 040603 (2008)

    MATH  Google Scholar 

  22. Pozorski, J.: Models of turbulent flows and particle dynamics, In: Minier, J.P. ,Pozorski, J. (eds.) Particles in Wall-Bounded Turbulent Flows: Deposition, Resuspension and Agglomeration. CISM International Centre for Mechanical Sciences, vol. 571, Springer, Wien, pp. 97–120 (2017)

  23. Khan, M.A.I., Luo, X.Y., Nicolleau, F.C.G.A., Tucker, P.G., LoIacono, G.: Effects of LES sub-grid flow structure on particle deposition in a plane channel with a ribbed wall. Int. J. Numer. Methods Biomed. Eng. 26, 995–1015 (2010)

    MathSciNet  Google Scholar 

  24. Ray, B., Collins, L.R.: A subgrid model for clustering of high-inertia particles in large-eddy simulations of turbulence. J. Turbul. 15, 366–385 (2014)

    MathSciNet  Google Scholar 

  25. Pozorski, J., Apte, S.V.: Filtered particle tracking in isotropic turbulence and stochastic modeling of subgrid-scale dispersion. Int. J. Multiph. Flow 35, 118–128 (2009)

    Google Scholar 

  26. Vinkovic, I., Aguirre, C., Simoens, S.: Large-eddy simulation and Lagrangian stochastic modeling of passive scalar dispersion in a turbulent boundary layer. J. Turbul 7, 1–14 (2006)

    MathSciNet  MATH  Google Scholar 

  27. Kuerten, J.G.M.: Point-particle DNS and LES of particle-laden turbulent flow. A state-of-the-art review. Flow Turbul. Combust. 97, 689–713 (2016)

    Google Scholar 

  28. Marchioli, C.: Large-eddy simulation of turbulent dispersed flows: a review of modelling approaches. Acta Mech. 228, 741–771 (2017)

    Google Scholar 

  29. Gualtieri, P., Casciola, C.M., Benzi, R., Piva, R.: Preservation of statistical properties in large-eddy simulation of shear turbulence. J. Fluid Mech. 592, 471–494 (2007)

    MATH  Google Scholar 

  30. Le Ribault, C., Simoens, S., Vinkovic, I.: Hybrid large eddy simulation/Lagarangian stochastic model for turbulent passive and reactive scalar dispersion in a plane jet. Chem. Eng. Commun. 199, 435–460 (2012)

    Google Scholar 

  31. Kenjeres, S.: On recent progress in modelling and simulations of multi-scale transfer of mass, momentum and particles in bio-medical applications. Flow Turbul. Combust. 96, 837–860 (2016)

    Google Scholar 

  32. Balachandar, S.: A scaling analysis for point-particle approaches to turbulent multiphase flows. Int. J. Multiph. Flow 35, 801–810 (2009)

    Google Scholar 

  33. Mallouppas, G., vanWachem, B.: Large-eddy simulation of turbulent particle-laden channel flow. Int. J. Multiph. Flow 54, 65–75 (2013)

    Google Scholar 

  34. Dritselis, C.D., Vlachos, N.S.: Large eddy simulation of gas-particle turbulent channel flow with momentum exchange between the phases. Int. J. Multiph. Flow 37, 706–721 (2011)

    Google Scholar 

  35. Marchioli, C., Armenio, V., Salvetti, M.V., Soldati, A.: Mechanisms for deposition and resuspension of heavy particles in turbulent flow over wavy interfaces. Phys. Fluids 18, 025102 (2006)

    Google Scholar 

  36. Vance, M.W., Squires, K.D., Simonin, O.: Properties of the particle velocity field in gas-solid turbulent channel flow. Phys. Fluids 18, 063302 (2006)

    Google Scholar 

  37. Uijttewaal, W.S.J., Oliemans, R.V.A.: Particle dispersion and deposition in direct numerical and large eddy simulation of vertical pipe flows. Phys. Fluids 8, 2590–2604 (1996)

    MATH  Google Scholar 

  38. Wang, Q., Squires, K.: Large eddy simulation of particle-laden turbulent channel flows. Phys. Fluids 8, 1207–1223 (1996)

    MATH  Google Scholar 

  39. Volino, R.J., Schultz, M.P., Flack, K.A.: Turbulence structure in boundary layers over periodic two- and three-dimensional roughness. J. Fluid Mech. 676, 172–190 (2011)

    MATH  Google Scholar 

  40. Hong, J., Katz, J., Schultz, M.P.: Near-wall turbulence statistics and flow structures over three-dimensional roughness in a turbulent channel flow. J. Fluid Mech. 667, 1–37 (2011)

    MATH  Google Scholar 

  41. De Marchis, M., Napoli, E.: Effects of irregular two-dimensional and three-dimensional surface roughness in turbulent channel flows. Int. J. Heat Fluid Flow 36, 7–17 (2012)

    Google Scholar 

  42. Milici, B., De Marchis, M., Sardina, G., Napoli, E.: Effects of roughness on particle dynamics in turbulent channel flows: a DNS analysis. J. Fluid Mech. 739, 465–478 (2014)

    Google Scholar 

  43. Konan, N.A., Kannengieiser, O., Simonin, O.: Stochastic modeling of the multiple rebound effects for particle-rough wall collisions. Int. J. Multiph. Flow 35(10), 933–945 (2009)

    Google Scholar 

  44. Sommerfeld, M., Kussin, J.: Wall roughness effects on pneumatic conveying of spherical particles in a narrow horizontal channel. Powder Technol. 142(2–3), 180–192 (2004)

    Google Scholar 

  45. Chang, Y., Scotti, A.: Entrainment and suspension of sediments into a turbulent flow over ripples. J. Turbul. 4(1), 1–19 (2003)

    Google Scholar 

  46. De Angelis, V., Lombardi, P., Banerjee, S.: Direct numerical simulation of turbulent flow over a wavy wall. Phys. Fluids 9, 2429–2442 (1997)

    Google Scholar 

  47. Marchioli, C., Armenio, V., Soldati, A.: Simple and accurate scheme for fluid velocity interpolation for Eulerian–Lagrangian computation of dispersed flows in 3D curvilinear grids. Comput. Fluids 36(7), 1187–1198 (2007)

    MATH  Google Scholar 

  48. Vreman, A.W.: Turbulence attenuation in particle-laden flow in smooth and rough channels. J. Fluid Mech. 773, 103–136 (2015)

    MathSciNet  Google Scholar 

  49. Sommerfeld, M., Huber, N.: Experimental analysis and modelling of particle-wall collisions. Int. J. Multiph. Flow 25(6–7), 1457–1489 (1999)

    MATH  Google Scholar 

  50. Squires, K., Simonin, O.: LES-DPS of the effect of wall roughness on dispersed-phase transport in particle-laden turbulent channel flow. Int. J. Heat Fluid Flow 27(4), 619–626 (2006)

    Google Scholar 

  51. Elghobashi, S., Truesdell, G.C.: On the two-way interaction between homogeneous turbulence and dispersed solid particles. I: Turbulence modification. Phys. Fluids A 5(7), 1790–1801 (1993)

    MATH  Google Scholar 

  52. Horwitz, J.A.K., Mani, A.: Accurate calculation of Stokes drag for point-particle tracking on two-way coupled flows. J. Comput. Phys. 318, 85–109 (2016)

    MathSciNet  MATH  Google Scholar 

  53. Battista, F., Gualtieri, P., Mollicone, J.P., Casciola, C.M.: Application of the Exact Regularixed Point Particle method (ERPP) to particle laden turbulent shear flows in the two-way coupling regime. Int. J. Heat Fluid Flow 101, 113–124 (2018)

    Google Scholar 

  54. Lilly, D.K.: A proposed modification of the germano subgrid-scale closure method. Phys. Fluids A 4, 633–635 (1992)

    Google Scholar 

  55. Elghobashi, S., Truesdell, G.C.: Direct simulation of particle dispersion in a decaying isotropic turbulence. J. Fluid Mech. 242, 655–700 (1992)

    Google Scholar 

  56. Soltani, M., Ahmadi, G.: Direct numerical simulation of particle entrainment in turbulent channel flow. Phys. Fluids 7, 647–657 (1995)

    MATH  Google Scholar 

  57. Arcen, B., Taniere, A., Oesterlé, B.: On the influence of near-wall forces in particle-laden channel flows. Int. J. Multiph. Flow 32, 1326–1339 (2006)

    MATH  Google Scholar 

  58. De Marchis, M., Milici, B., Napoli, E.: Solid sediment transport in turbulent channel flow over irregular rough boundaries. Int. J. Heat Fluid Flow 65, 114–126 (2017)

    Google Scholar 

  59. Armenio, V., Fiorotto, V.: The importance of the forces acting on particles in turbulent flows. Phys. Fluids 13(8), 2437 (2001)

    MATH  Google Scholar 

  60. Schiller, H., Naumann, A.: Uber die grundlegenden Berechnungen bei der Schwerkraftaufbereitung. Z. Ver. Deut. Ing. 77, 318–320 (1935)

    Google Scholar 

  61. Crowe, C.T., Sharma, M.P., Stock, D.E.: The particle-source-in cell (PSI-CELL) model for gas-droplet flows. J. Fluids Eng. 99, 325–332 (1977)

    Google Scholar 

  62. Dritselis, C.D., Vlachos, N.S.: Numerical investigation of momentum exchange between particles and coherent structures in low Re turbulent channel flow. Phys. Fluids 23, 025103 (2011)

    Google Scholar 

  63. Vreman, A.W.: Particle-resolved direct numerical simulation of homogeneous isotropic turbulence modified by small fixed spheres. J. Fluid Mech. 796, 40–85 (2016)

    MathSciNet  Google Scholar 

  64. Eaton, J.K.: Two-way coupled turbulence simulations of gas-particle flows using point-particle tracking. Int. J. Multiph. Flow 35, 792–800 (2009)

    Google Scholar 

  65. Gualtieri, P., Picano, F., Sardina, G., Casciola, C.M.: Exact regularized point particle method for multi-phase flows in the two-way coupling regime. J. Fluid Mech. 773, 520–561 (2015)

    MathSciNet  MATH  Google Scholar 

  66. Breuer, M., Alletto, M.F.: Efficient simulation of particle-laden turbulent flows with high mass loadings using LES. Int. J. Heat Fluid Flow 35, 2–12 (2012)

    Google Scholar 

  67. Alletto, M., Breuer, M.: One-way, two-way and four-way coupled LES predictions of a particle-laden turbulent flow at high mass loading downstream of a confined bluff body. Int. J. Multiph. Flow 45, 70–90 (2012)

    Google Scholar 

  68. Yuu, S., Ueno, T., Umekage, T.: Numerical simulation of the high Reynolds number slit nozzle gas-particle jet using subgrid-scale coupling large eddy simulation. Chem. Eng. Sci. 56, 4293–4307 (2002)

    Google Scholar 

  69. Squires, K., Eaton, J.K.: Particle response and turbulence modification in isotropic turbulence. Phys. Fluids A 2(7), 1191–1203 (1990)

    Google Scholar 

  70. Crowe, C.T., Troutt, T.R., Chung, J.N.: Numerical models for two-phase turbulent flows. Annu. Rev. Fluid Mech. 28, 11–43 (1996)

    MathSciNet  Google Scholar 

  71. Maxey, M.R., Patel, B.K., Wang, L.P.: Simulations of dispersed turbulent multiphase flow. Fluid Dyn. Res. 20, 143–148 (1997)

    Google Scholar 

  72. Boivin, M., Simonin, O., Squires, K.D.: Direct numerical simulation of turbulence modulation by particles in isotropic turbulence. J. Fluid Mech. 375, 235–263 (1998)

    MATH  Google Scholar 

  73. Li, Y., Mc Laughlin, J.B., Kontomaris, K., Portela, L.: Numerical simulation of particle-laden turbulent channel flow. Phys. Fluids 13(10), 2957–2967 (2001)

    MATH  Google Scholar 

  74. Dritselis, C.D., Vlachos, N.S.: Numerical study of educed coherent structures in the near-wall region of a particle-laden channel flow. Phys. Fluids 20, 055103 (2008)

    MATH  Google Scholar 

  75. Nasr, H., Ahmadi, G., McLaughlin, J.B.: A DNS study of effects of particle-particle collisions and two-way coupling on particle deposition and phasic fluctuations. J. Fluid Mech. 640, 507–536 (2009)

    MATH  Google Scholar 

  76. De Marchis, M., Milici, B., Sardina, G., Napoli, E.: Interaction between turbulent structures and particles in roughened channel. Int. J. Multiph. Flow 78, 117–131 (2016)

    Google Scholar 

  77. Napoli, E., De Marchis, M., Gianguzzi, C., Milici, B., Monteleone, A.: A coupled finite volume-smoothed particle hydrodynamics method for incompressible flows. Comput. Methods Appl. Mech. Eng. 310, 674–693 (2016)

    MathSciNet  MATH  Google Scholar 

  78. De Marchis, M., Milici, B., Napoli, E.: Numerical observations of turbulence structure modification in channel flow over 2D and 3D rough walls. Int. J. Heat Fluid Flow 56, 108–123 (2015)

    Google Scholar 

  79. De Marchis, M.: Large eddy simulations of roughened channel flows: estimation of the energy losses using the slope of the roughness. Comput. Fluids 140, 148–157 (2016)

    MathSciNet  MATH  Google Scholar 

  80. Monteleone, A., De Marchis, M., Milici, B., Napoli, E.: A multi-domain approach for smoothed particle hydrodynamics simulations of highly complex flows. Comput. Methods Appl. Mech. Eng. 340, 956–977 (2018)

    MathSciNet  MATH  Google Scholar 

  81. De Marchis, M., Milici, B., Napoli, E.: Large eddy simulations on the effects of the irregular roughness shape on turbulent channel flows. Int. J. Heat. Fluid Flow 80, 108494 (2019)

    Google Scholar 

  82. Milici, B., De Marchis, M.: Statistics of inertial particle deviation from fluid particle trajectories in horizontal rough wall turbulent channel flow. Int. J. Heat. Fluid Flow 60, 1–11 (2016)

    Google Scholar 

  83. Boivin, M., Simonin, O., Squires, K.D.: On the prediction of gas-solid flows with two-way coupling using large eddy simulation. Int. J. Heat. Fluid Flow 60, 1–11 (2016)

    MATH  Google Scholar 

  84. Piomelli, U., Balaras, E.: Wall-layer models for large-eddy-simulations. Phys. Fluids. 12, 2080–2090 (2000)

    MATH  Google Scholar 

  85. Jelly, T.O., Busse, A.: A Reynolds and dispersive shear stress contributions above highly skewed roughness. J. Fluid Mech. 852, 710–724 (2018)

    MathSciNet  MATH  Google Scholar 

  86. Schmid, M.F., Lawrence, G.A., Parlange, M.B., Giometto, M.G.: Volume averaging for urban canopies. Bound. Layer Meteorol. 173, 349–372 (2019)

    Google Scholar 

  87. Milici, B.: Modification of particle laden near-wall turbulence in a vertical channel bounded by rough walls. Int. J. Multiph. Flow 103, 151–168 (2018)

    MathSciNet  Google Scholar 

  88. Molin, D., Marchioli, C., Soldati, A.: Turbulence modulation and microbubble dynamics in vertical channel flow. Int. J. Multiph. Flow 42, 80–95 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Milici.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Milici, B., De Marchis, M. & Napoli, E. Large eddy simulation of inertial particles dispersion in a turbulent gas-particle channel flow bounded by rough walls. Acta Mech 231, 3925–3946 (2020). https://doi.org/10.1007/s00707-020-02740-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-020-02740-5

Navigation