Skip to main content
Log in

Dike Complexes of the Gromadnen–Vurguveem Ophiolite Massif, West Chukotka: Composition and Geodynamic Setting

  • Published:
Russian Journal of Pacific Geology Aims and scope Submit manuscript

Abstract

The Middle (?) to Late Paleozoic ophiolite association of West Chukotka comprises the large Aluchin, Atamanov, and Gromadnen–Vurguveem mafic–ultramafic massifs, which are spatially associated with Late Paleozoic volcanic rocks of the Yarakvaam terrane. This paper is devoted to the dikes of the Gromadnen–Vurguveem massif, which form two spatially isolated complexes: “dikes 1” and “dikes 2.” Both complexes intrude the plutonic gabbroids of the massif. The “dikes 1” complex forms a dike body nappe structurally linked with Paleozoic island-arc volcanics. The rocks of the complex are differentiated from basalts to dacites and chemically correspond to island-arc tholeiites. The “dikes 2” complex consists of separate basaltic dikes, some of which are similar to the “dike 1” rocks. The Ar/Ar dating of these samples gave 264–266 Ma. The other part of the rocks of this complex shows mixed signatures of island-arc tholeiites and N-MORB. It was concluded that the studied dike complexes, together with the earlier studied dikes of the Aluchin massif, marks the early (Late Permian) stage of the back-arc basin evolution. The Late Triassic dikes of the Atamanov massif reflect a more mature stage in the evolution of this basin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. G. E. Bondarenko, Extended Abstract of Doctoral Dissertation in Geology and Mineralogy (MGU, Moscow, 2004).

  2. A. V. Ganelin and S. A. Silantyev, “Composition and geodynamic conditions of formation of the intrusive rocks of the Gromadnen–Vurguveem peridotite gabbro massif, Western Chukotka,” Petrology 16 (6), 565–584 (2008).

  3. A. V. Ganelin, “Geochemistry and geodynamic significance of the dike series of the Aluchin ophiolite complex, Verkhoyansk–Chukotka Fold Zone, northeast Russia,” Geochem. Int., 49 (7), 654–675 (2011).

  4. A. V. Ganelin, S. D. Sokolov, P. Layer, and V. A. Simonov, “New isotopic age data on ophiolite complexes of western Chukotka (Northeast Russia),” Dokl. Earth Sci. 451 (1), 679–683 (2013).

  5. A. V. Ganelin, Extended Abstract of Candidate’s Dissertation in Geology and Mineralogy (Moscow, 2015).

  6. E. A. Korago, “Magmatic formations of the Bolshoi Anyui River as indicators of geodynamic settings of the past and long-discrete evolution of the South Anyui fold zone,” in Magmatism and Metamorphism of Northeast Asia. Proceedings of 4th Regional Petrographic Conference on Northeast Russia, (SVKNII DVO RAN, Magadan, 2000), pp. 187–190 [in Russian].

  7. S. A. Kurenkov, A. N. Didenko, and V. A. Simonov, Geodynamics of Paleospreading (GEOS, Moscow, 2002) [in Russian].

    Google Scholar 

  8. P. P. Lychagin, “Aluchin massif and problem of ophiolite ultrabasites in the gabbroids and Mesozoides of Northeast USSR,” Tikhookean. Geol., No. 5, 33–41 (1985).

  9. P. P. Lychagin, S. G. Byalobzheskii, Yu. A. Kolyasnikov, and V. B. Likman, “Magmatic history of the South Anyui Fold Zone,” Geology of the Continent–Ocean Transition Zone on Northeast Asia (Short Description of the Results of Most Important Studies in 1985–1990) (SVKNII DVO RAN, Magadan, 1991), pp. 140–157 [in Russian].

    Google Scholar 

  10. P. P. Lychagin, S. G. Byalobzheskii, Yu. A. Kolyasnikov, E. A. Korago, and V. B. Likman, Geology and Petrography of the Gromadnen–Vurguveem Massif (South Anyui Fold Zone) (SVKNII DVO RAN, Magadan, 1991) [in Russian].

    Google Scholar 

  11. B. A. Natal’in, Early Mesozoic Eugeosynclinal Systems of the Northern Pacific Framing (Nauka, Moscow, 1984) [in Russian].

    Google Scholar 

  12. V. S. Oksman, A. V. Ganelin, S. D. Sokolov, O. L. Morozov, F. F. Tret’yakov, and S. A. Silantyev, “Ophiolite belts of the Arctic regions of the Verkhoyansk–Chukotka orogenic belt: geodynamic model of formation,” Tikhookean. Geol. 22 (6), 62–75 (2003).

  13. Z. A. Palymskaya and B. F. Palymskii, “Late Paleozoic intrusive magmatism of the eastern Anyui–Oloi block (Western Chukotka),” Magmatism of Northeast Asia. Proc. 1rst North Eastern Petrographic Conference, Magadan, 1975 (Magadan, 1975), Vol. 2, pp. 51–58 [in Russian].

  14. L. M. Parfenov and B. A. Natal’in, “Tectonic evolution of Northeast Asia in the Mesozoic and Cenozoic,” Dokl. Akad. Nauk SSSR 235 (5), 1132–1135 (1977).

  15. A. Ya. Radzivill and V. Ya. Radzivil, “Late Jurassic magmatic complexes of the South Anyui trough,” in Proc. 1rst Northeastern Petrographic Conference, (Magadan. kn. izd-vo, Magadan, 1975), pp. 71–80 [in Russian].

  16. V. G. Sakhno and Yu. A. Martynov, “Magmatism and fluid mode of main structures of the Pacific Ocean,” in Solid Oceanic Crust (“Litos” Project) (Nauka, Moscow, 1987), pp. 65–91 [in Russian].

    Google Scholar 

  17. K. B. Seslavinskii, “South Anyui suture (Western Chukotka),” Dokl. Akad. Nauk SSSR 245 (5), 1181–1185 (1979).

  18. V. A. Simonov, A. G. Klets, S. V. Kovyazin, S. I. Stupakov, and A. V. Travin, “The Physicochemical conditions of early plume magmatism in West Siberia,” Russ. Geol. Geophys. 51 (9), 995–1011 (2010).

  19. S. D. Sokolov, G. E. Bondarenko, O. L. Morozov, A. V. Ganelin, and I. I. Podgornyi, “Nappe-type tectonics of the South Anyui suture in the Western Chukot Peninsula,” Dokl. Earth Sci. 376 (1), 7–11 (2001).

  20. S. D. Sokolov, “Tectonics of Northeast Asia: an overview,” Geotectonics, 44 (6), 493–509 (2010).

  21. S. D. Sokolov, M. I. Tuchkova, A. V. Ganelin, G. E. Bondarenko, and P. Layer, “Tectonics of the South Anyui Suture, Northeastern Asia,” Geotectonics, 49 (1), 3–26 (2015).

  22. V. A. Shekhovtsov and S. P. Glotov, State Geological Map of RF. 1 : 200 000. Oloiskaya Series. Sheet Q-58-XI, XII: Explanatory Notes,, Ed. by S. D. Sokolov (Moscow, 2000) [in Russian].

  23. Y. I. Dmitriev, “Basalt from the East Pacific Rise near 9° N drilled on Deep Sea Drilling Project Leg 54 compared with marginal-basin and ocean-island basalt,” Initial Reports of the Deep Sea Drilling Project 54, 695–704 (1980).

  24. T. Elliot, T. Plank, A. Zindler, W. White, and B. Bourdon, “Element transport from slab to volcanic front at the Mariana Arc,” J. Geophys. Res. 102 (B7), 14991–15019 (1997).

  25. A. Ewart, “The mineralogy and petrology of Tertiary–recent orogenic Volcanic Rocks: with special reference to the andesiticbasaltic compositional range,” Andesites: Orogenic Andesites and Related Rocks, Ed. by R. S. Thorpe (John Wiley and Sons; New York, 1982), pp. 25–95.

    Google Scholar 

  26. R. F. Gribble, R. J. Stern, S. H. Bloomer, D. Stuben, T. O’Hearn, and S. Newman, “MORB mantle and subduction components interact to generate basalts in the Southern Mariana trough backarc basin,” Geochim. Cosmochim. Acta 60 (20), 2153–2166 (1996).

  27. R. F. Gribble, R. J. Stern, S. Newman, S. H. Bloomer, and T. O’Hearn, “Chemical and isotopic composition of lavas from the Mariana trough: implications for magma genesis in back-arc basins,” J. Petrol. 39 (1), 125–154 (1998).

  28. J. W. Hawkins, “Geology of supra-subduction zones: implications for the origin of ophiolites,” Spec. Pap. Geol. Soc. Am., 373, 227–268 (2003).

  29. G. A. Jenner, G. R. Dunning, J. Malpas, M. Brown, and T. Brace, “Bay of Islands and Little Port complexes, revisited: age, geochemical, and isotopic evidence confirm supra-subduction zone origin,” Can. J. Earth Sci. 28, 1635–1652 (1991).

  30. R. W. Le Maitre, P. Bateman, and A. Dudek, A Classification of Igneous Rocks and Glossary of Term (Blackwell, Oxford, 1989), рр. 137–150.

    Google Scholar 

  31. I. McDougall and T. M. Harrison, Geochronology and Thermochronology by the40Ar/39Ar Method. 2nd ed., (Univ. Press, New York, Oxford, 1999).

    Google Scholar 

  32. R. V. Metcalf and J. W. Shervais, “Suprasubduction-zone ophiolites: is there really an ophiolite conundrum?,” Geol. Soc. Am. Spec. Paper 438, 191–222 (2008).

  33. J. A. Pearce, Trace element characteristics of lavas from destructive plate boundaries,” in Andesites, Ed. by R. S. Thorpe (Wiley, Chichester, 1982), pp. 525–548.

    Google Scholar 

  34. J. A. Pearce and R. J. Stern, “Origin of back-arc basin magmas: trace element and isotope perspectives, Back-Arc Spreading Systems: Geological, Biological, Chemical, and Physical Interactions, Geophys. Monogr. Ser. 166, 63–86 (2006).

  35. J. W. Shervais, “Ti–V plots and the petrogenesis of modern and ophiolitic lavas,” Earth Planet. Sci. Lett. 59, 101–118 (1982).

  36. S. D. Sokolov, G. E. Bondarenko, O. L. Morozov, et al., “South Anyui Suture, northeast Arctic Russia: facts and problems,” Geol. Soc. Am. Spec. Pap. 360, 209–224 (2002).

  37. S. Sun and W. McDonough, “Chemical and isotopic systematic of oceanic basalts: implications for mantle composition and processes,” in Magmatism in the Ocean Basins, Ed. by A. D. Saunders and M. J. Norry, Geol. Soc. Spec. Publ. London, 42, pp. 313–345 (1989).

    Google Scholar 

  38. D. A. Wood, “The application of a Th–Hf–Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic laves of the British Tertiary Volcanic Province,” Earth Planet Sci. Lett. 50 (1–2), 11–30 (1980).

  39. J. D. Woodhead, “Geochemisry of the Mariana Arc (Western Pacific): source composition and processes,” Chem. Geol. 76, 1–24 (1989).

Download references

ACKNOWLEDGMENTS

The original version of the manuscript was greatly improved following careful reading and comments by A.N. Didenko.

Funding

The work was supported by the Russian Foundation for Basic Research (project no. 17-05-00795) and by the State Task.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Ganelin.

Additional information

Recommended for publishing by A.N. Didenko

Translated by M. Bogina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganelin, A.V., Sokolov, S.D. Dike Complexes of the Gromadnen–Vurguveem Ophiolite Massif, West Chukotka: Composition and Geodynamic Setting. Russ. J. of Pac. Geol. 14, 206–220 (2020). https://doi.org/10.1134/S1819714020030021

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1819714020030021

Keywords:

Navigation