Skip to main content
Log in

Sample Preparation of Biological Tissues and Cells for the Time-of-Flight Secondary Ion Mass Spectrometry

  • REVIEWS
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

The review is devoted to the application of time-of-flight secondary ion mass spectrometry (ToF–SIMS) to the analysis of biological tissues and cells. The invention of cluster primary ions significantly improved the sensitivity, especially in the mass range above several hundred of Daltons, which opened up the study of lipids, amino acids, nucleic acids, metabolites, and drugs. As other methods based on the bombardment of sample surface with a particle beam, ToF–SIMS measurements are carried out under ultrahigh vacuum conditions, which makes sample preparation of biological materials a critical stage of the experiment. Several techniques have been developed for preparing single cells, cell cultures, and tissues for the analysis. Most of them are based on conventional techniques used in histology and cytology, including optical, electron, probe microscopy and electron probe microanalysis. However, the analytical features of ToF–SIMS make it necessary to adapt these techniques. A universal solution does not exist, and the main objective of this review was to systematize and compare the developed techniques of the sample preparation for ToF–SIMS. The effect of instrumental factors on the results of the ToF–SIMS analysis of biological samples was also reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Tian, H., Sparvero, L.J., Amoscato, A.A., Bloom, A., Bayir, H., Kagan, V.E., and Winograd, N., Anal. Chem., 2017, vol. 89, no. 8, p. 4611.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Veith, L., Vennemann, A., Breitenstein, D., Engelhard, C., Wiemann, M., and Hagenhoff, B., Analyst, 2017, vol. 142, no. 14, p. 2631.

    CAS  PubMed  Google Scholar 

  3. Pour, M.D., Jennische, E., Lange, S., Ewing, A.G., and Malmberg, P., Sci. Rep., 2016, vol. 6, 32797.

    Google Scholar 

  4. Shon, H.K., Kim, S.H., Yoon, S., Shin, C.Y., and Lee, T.G., Biointerphases, 2018, vol. 13, no. 3, 03B411.

  5. Wehrli, P.M., Angerer, T.B., Farewell, A., Fletcher, J.S., and Gottfries, J., Anal. Chem., 2016, vol. 88, no. 17, p. 8680.

    CAS  PubMed  Google Scholar 

  6. Gulin, A.A., Koksharova, O.A., Popova, A.A., Khmel’, I.A., Astaf’ev, A.A., Shakhov, A.M., and Nadtochenko, V.A., Nanotechnol. Russ., 2016, vol. 11, nos. 5–6, p. 361.

    Google Scholar 

  7. Angerer, T.B., Magnusson, Y., Landberg, G., and Fletcher, J.S., Anal. Chem., 2016, vol. 88, no. 23, p. 11946.

    CAS  PubMed  Google Scholar 

  8. Newman, C.F., Hayelund, R., Passarelli, M.K., Marshall, P.S., Francis, I., West, A., Alexander, M.R., Gilmore, I.S., and Dollery, C.T., Anal. Chem., 2017, vol. 89, no. 22, p. 11944.

    CAS  PubMed  Google Scholar 

  9. Sheng, L.F., Cai, L.S., Wang, J., Li, Z.P., Mo, Y.X., Zhang, S.C., Xu, J.J., Zhang, X.R., and Chen, H.Y., Int. J. Mass Spectrom. Ion Processes, 2017, vol. 421, p. 238.

    CAS  Google Scholar 

  10. Converso, V., Fearn, S., Ware, E., McPhail, D.S., Flemming, A.J., and Bundy, J.G., Sci. Rep., 2017, vol. 7, 10728.

    PubMed  PubMed Central  Google Scholar 

  11. Kyriacou, B., Moore, K.L., Paterson, D., de Jonge, M.D., Howard, D.L., Stangoulis, J., Tester, M., Lombi, E., and Johnson, A.A.T., J. Cereal Sci., 2014, vol. 59, no. 2, p. 173.

    CAS  Google Scholar 

  12. Saito, K., Watanabe, Y., Shirakawa, M., Matsushita, Y., Imai, T., Koike, T., Sano, Y., Funada, R., Fukazawa, K., and Fukushima, K., Plant J., 2012, vol. 69, no. 3, p. 542.

    CAS  PubMed  Google Scholar 

  13. Moore, K.L., Chen, Y., van de Meene, A.M.L., Hughes, L., Liu, W.J., Geraki, T., Mosselmans, F., McGrath, S.P., Grovenor, C., and Zhao, F.J., New Phytol., 2014, vol. 201, no. 1, p. 104.

    CAS  PubMed  Google Scholar 

  14. Vickerman, J.C., in Surface Analysis: The Principal Techniques, Vickerman, J.C. and Gilmore, I.S., Eds., Singapore: Wiley, 2009, p. 113.

    Google Scholar 

  15. Breitenstein, D., Hagenhoff, B., and Schnieders, A., in Surface Analysis and Techniques in Biology, Cham, Switzerland: Springer, 2014, p. 37.

    Google Scholar 

  16. Gulin, A., Nadtochenko, V., Astafiev, A., Pogorelova, V., Rtimi, S., and Pogorelov, A., Analyst, 2016, vol. 141, no. 13, p. 4121.

    CAS  PubMed  Google Scholar 

  17. Draude, F., Korsgen, M., Pelster, A., Schwerdtle, T., Muthing, J., and Arlinghaus, H.F., Anal. Bioanal. Chem., 2015, vol. 407, no. 8, p. 2203.

    CAS  PubMed  Google Scholar 

  18. Touboul, D., Laprevote, O., and Brunelle, A., Curr. Opin. Chem. Biol., 2011, vol. 15, no. 5, p. 725.

    CAS  PubMed  Google Scholar 

  19. Touboul, D. and Brunelle, A., Bioanalysis, 2016, vol. 8, no. 5, p. 367.

    CAS  PubMed  Google Scholar 

  20. Vickerman, J.C., Analyst, 2011, vol. 136, no. 11, p. 2199.

    CAS  PubMed  Google Scholar 

  21. Chini, C.E., Fisher, G.L., Johnson, B., Tamkun, M.M., and Kraft, M.L., Biointerphases, 2018, vol. 13, no. 3, 03B409.

  22. Henss, A., Otto, S.K., Schaepe, K., Pauksch, L., Lips, K.S., and Rohnke, M., Biointerphases, 2018, vol. 13, no. 3, 03B410.

  23. Robinson, M.A., Graham, D.J., and Castner, D.G., Anal. Chem., 2012, vol. 84, no. 11, p. 4880.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Vanbellingen, Q.P., Castellanos, A., Rodriguez-Silva, M., Paudel, I., Chambers, J.W., and Fernandez-Lima, F.A., J. Am. Soc. Mass Spectrom., 2016, vol. 27, no. 12, p. 2033.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Fornai, L., Angelini, A., Klinkert, I., Giskes, F., Kiss, A., Eijkel, G., Hove, E.A.A.-V., Klerk, L.A., Fedrigo, M., Pieraccini, G., Moneti, G., Valente, M., Thiene, G., and Heeren, R.M.A., Anal. Bioanal. Chem., 2012, vol. 404, no. 10, p. 2927.

    CAS  PubMed  Google Scholar 

  26. Masaki, N., Ishizaki, I., Hayasaka, T., Fisher, G.L., Sanada, N., Yokota, H., and Setou, M., Sci. Rep., 2015, vol. 5, 1000.

    Google Scholar 

  27. Dowsett, M.G., Appl. Surf. Sci., 2003, vols. 203–204, p. 5.

    Google Scholar 

  28. Liu, R., Ng, C.M., and Wee, A.T.S., Appl. Surf. Sci., 2003, vols. 203−204, p. 256.

    Google Scholar 

  29. Rees, E.E., McPhail, D.S., Ryan, M.P., Kelly, J., and Dowsett, M.G., Appl. Surf. Sci., 2003, vols. 203–204, p. 660.

    Google Scholar 

  30. Touboul, D., Kollmer, F., Niehuis, E., Brunelle, A., and Laprevote, O., J. Am. Soc. Mass Spectrom., 2005, vol. 16, no. 10, p. 1608.

    CAS  PubMed  Google Scholar 

  31. Kersting, R., Hagenhoff, B., Kollmer, F., Möllers, R., and Niehuis, E., Appl. Surf. Sci., 2004, vols. 231–232, p. 261.

    Google Scholar 

  32. Gulin, A.A., Pavlyukov, M.S., Gusev, S.A., Malakhova, Yu.N., Buzin, A.I., Chvalun, S.N., Aldarov, K.G., Klinov, D.V., Gularyan, S.K., and Nadtochenko, V.A., Biol. Membr., 2017, vol. 34, no. 3, p. 215.

    CAS  Google Scholar 

  33. Van der Heide, P., Secondary Ion Mass Spectrometry: An Introduction to Principles and Practices, Hoboken, NJ: Wiley, 2014.

    Google Scholar 

  34. van Hove, E.R.A., Smith, D.F., and Heeren, R.M.A., J. Chromatogr. A, 2010, vol. 1217, no. 25, p. 3946.

    Google Scholar 

  35. Postawa, Z., Czerwinski, B., Szewczyk, M., Smiley, E.J., Winograd, N., and Garrison, B.J., Anal. Chem., 2003, vol. 75, no. 17, p. 4402.

    CAS  PubMed  Google Scholar 

  36. Paruch, R., Rzeznik, L., Russo, M.F., Garrison, B.J., and Postawa, Z., J. Phys. Chem. C, 2010, vol. 114, no. 12, p. 5532.

    CAS  Google Scholar 

  37. Muramoto, S., Brison, J., and Castner, D.G., Anal. Chem., 2012, vol. 84, no. 1, p. 365.

    CAS  PubMed  Google Scholar 

  38. Kollmer, F., Appl. Surf. Sci., 2004, vols. 231–232, p. 153.

    Google Scholar 

  39. Brunelle, A., Touboul, D., and Laprevote, O., J. Mass Spectrom., 2005, vol. 40, no. 8, p. 985.

    CAS  PubMed  Google Scholar 

  40. Cluster Secondary Ion Mass Spectrometry: Principles and Applications, Mahoney, C.M., Ed., Hoboken, NJ: Wiley, 2013.

    Google Scholar 

  41. Kubicek, M., Holzlechner, G., Opitz, A.K., Larisegger, S., Hutter, H., and Fleig, J., Appl. Surf. Sci., 2014, vol. 289, p. 407.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Fletcher, J.S., Lockyer, N.P., Vaidyanathan, S., and Vickerman, J.C., Anal. Chem., 2007, vol. 79, no. 6, p. 2199.

    CAS  PubMed  Google Scholar 

  43. Angerer, T.B., Blenkinsopp, P., and Fletcher, J.S., Int. J. Mass Spectrom. Ion Processes, 2015, vol. 377, p. 591.

    CAS  Google Scholar 

  44. Muramoto, S., Graham, D.J., Wagner, M.S., Lee, T.G., Moon, D.W., and Castner, D.G., J. Phys. Chem. C, 2011, vol. 115, no. 49, p. 24247.

    CAS  Google Scholar 

  45. Garrison, B.J. and Postawa, Z., in ToF-ToF–SIMS: Surface Analysis by Mass Spectrometry, Briggs, D. and Vickerman, J., Eds., Chichester: IM, 2013, 2nd ed., p. 151.

  46. Ichiki, K., Ninomiya, S., Nakata, Y., Honda, Y., Seki, T., Aoki, T., and Matsuo, J., Appl. Surf. Sci., 2008, vol. 255, no. 4, p. 1148.

    CAS  Google Scholar 

  47. Wehbe, N., Mouhib, T., Delcorte, A., Bertrand, P., Moellers, R., Niehuis, E., and Houssiau, L., Anal. Bioanal. Chem., 2014, vol. 406, no. 1, p. 201.

    CAS  PubMed  Google Scholar 

  48. Wehbe, N., Tabarrant, T., Brison, J., Mouhib, T., Delcorte, A., Bertrand, P., Moellers, R., Niehuis, E., and Houssiau, L., Surf. Interface Anal., 2013, vol. 45, no. 1, p. 178.

    CAS  Google Scholar 

  49. Rabbani, S.S.N., Razo, I.B., Kohn, T., Lockyer, N.P., and Vickerman, J.C., Anal. Chem., 2015, vol. 87, no. 4, p. 2367.

    Google Scholar 

  50. Eller, M.J., Vinjamuri, A., Tomlin, B.E., and Schweikert, E.A., Anal. Chem., 2018, vol. 90, no. 21, p. 12692.

    CAS  PubMed  Google Scholar 

  51. Wucher, A., Tian, H., and Winograd, N., Rapid Commun. Mass Spectrom., 2014, vol. 28, no. 4, p. 396.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Puchtler, H. and Meloan, S.N., Histochemistry, 1985, vol. 82, no. 3, p. 201.

    CAS  PubMed  Google Scholar 

  53. Walt, D.R. and Agayn, V.I., TrAC,Trends Anal. Chem., 1994, vol. 13, no. 10, p. 425.

    CAS  Google Scholar 

  54. Malm, J., Giannaras, D., Riehle, M.O., Gadega-ard, N., and Sjovall, P., Anal. Chem., 2009, vol. 81, no. 17, p. 7197.

    CAS  PubMed  Google Scholar 

  55. Passarelli, M.K. and Winograd, N., Biochim. Biophys. Acta, Mol.Cell Biol. Lipids, 2011, vol. 1811, no. 11, p. 976.

    CAS  Google Scholar 

  56. Zierold, K., J. Microsc. (Oxford, U. K.), 1991, vol. 161, p. 357.

    CAS  Google Scholar 

  57. Pogorelov, A.G., Katkov, I.I., and Pogorelova, V.N., CryoLetters, 2007, vol. 28, no. 6, p. 403.

    CAS  PubMed  Google Scholar 

  58. Studer, D., Hennecke, H., and Müller, M., Planta, 1992, vol. 188, no. 2, p. 155.

    CAS  PubMed  Google Scholar 

  59. Piwowar, A.M., Lockyer, N.P., and Vickerman, J.C., Anal. Chem., 2009, vol. 81, no. 3, p. 1040.

    CAS  PubMed  Google Scholar 

  60. Jones, E.A., Lockyer, N.P., and Vickerman, J.C., Anal. Chem., 2008, vol. 80, no. 6, p. 2125.

    CAS  PubMed  Google Scholar 

  61. Berman, E.S.F., Fortson, S.L., Checchi, K.D., Wu, L., Felton, J.S., Wu, K.J.J., and Kulp, K.S., J. Am. Soc. Mass Spectrom., 2008, vol. 19, no. 8, p. 1230.

    CAS  PubMed  Google Scholar 

  62. Nygren, H., Eriksson, C., Malmberg, P., Sahlin, H., Carlsson, L., Lausmaa, J., and Sjovall, P., Colloids Surf., B, 2003, vol. 30, nos. 1–2, p. 87.

    CAS  Google Scholar 

  63. Piwowar, A.M., Keskin, S., Delgado, M.O., Shen, K., Hue, J.J., Lanekoff, I., Ewing, A.G., and Winograd, N., Surf. Interface Anal., 2013, vol. 45, no. 1, p. 302.

    CAS  PubMed  Google Scholar 

  64. Piehowski, P.D., Kurczy, M.E., Willingham, D., Parry, S., Heien, M.L., Winograd, N., and Ewing, A.G., Langmuir, 2008, vol. 24, no. 15, p. 7906.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Kurczy, M.E., Piehowski, P.D., Parry, S.A., Jiang, M., Chen, G., Ewing, A.G., and Winograd, N., Appl. Surf. Sci., 2008, vol. 255, no. 4, p. 1298.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Robinson, M.A. and Castner, D.G., Biointerphases, 2013, vol. 8, 15.

    PubMed  PubMed Central  Google Scholar 

  67. Schaepe, K., Kokesch-Himmelreich, J., Rohnke, M., Wagner, A.S., Schaaf, T., Wenisch, S., and Janek, J., Biointerphases, 2015, vol. 10, no. 1, 019016.

    PubMed  PubMed Central  Google Scholar 

  68. Conlan, X.A., Lockyer, N.P., and Vickerman, J.C., Rapid Commun. Mass Spectrom., 2006, vol. 20, no. 8, p. 1327.

    CAS  PubMed  Google Scholar 

  69. Aoki, N., Komatsu, M., Kyogaku, M., and Hashimoto, H., Int. J. Mass Spectrom. Ion Processes, 2013, vol. 351, p. 1.

    CAS  Google Scholar 

  70. Bobrowska, J., Pabijan, J., Wiltowska-Zuber, J., Jany, B.R., Krok, F., Awsiuk, K., Rysz, J., Budkowski, A., and Lekka, M., Anal. Biochem., 2016, vol. 511, p. 52.

    CAS  PubMed  Google Scholar 

  71. Draude, F., Galla, S., Pelster, A., Tentschert, J., Jungnickel, H., Haase, A., Mantion, A., Thunemann, A.F., Taubert, A., Luch, A., and Arlinghaus, H.F., Surf. Interface Anal., 2013, vol. 45, no. 1, p. 286.

    CAS  Google Scholar 

  72. Lanekoff, I., Kurczy, M.E., Adams, K.L., Malm, J., Karlsson, R., Sjovall, P., and Ewing, A.G., Surf. Interface Anal., 2011, vol. 43, nos. 1–2, p. 257.

    CAS  Google Scholar 

  73. Wojciechowski, I.A., Kutliev, U., Sun, S.X., Szakal, C., Winograd, N., and Garrison, B.J., Appl. Surf. Sci., 2004, vol. 231, p. 72.

    Google Scholar 

  74. Wojciechowski, I.A., Sun, S.X., Szakal, C., Winograd, N., and Garrison, B.J., J. Phys. Chem. A, 2004, vol. 108, no. 15, p. 2993.

    CAS  Google Scholar 

  75. Astafiev, A.A., Gulin, A.A., Osychenko, A.A., Solodina, A.E., Syrchina, M.S., Titov, A.A., Shakhov, A.M., Pogorelov, A.G., Pogorelova, V.N., Panait, A.I., and Nadtochenko, V.A., Russ. Nanotechnol., 2017, vol. 12, nos. 7–8, p. 444.

    CAS  Google Scholar 

  76. Pogorelov, A.G., Gulin, A.A., Pogorelova, V.N., Panait, A.I., Pogorelova, M.A., and Nadtochenko, V.A., Biophysics, 2018, vol. 63, no. 2, p. 215.

    CAS  Google Scholar 

  77. Rangarajan, S. and Tyler, B.J., J. Vac. Sci. Technol., A, 2006, vol. 24, no. 5, p. 1730.

    CAS  Google Scholar 

  78. Lee, J.L.S., Gilmore, I.S., Seah, M.P., and Fletcher, I.W., J. Am. Soc. Mass Spectrom., 2011, vol. 22, no. 10, p. 1718.

    CAS  PubMed  Google Scholar 

  79. Yoon, S. and Lee, T.G., Nano Convergence, 2018, vol. 5, 24.

    PubMed  PubMed Central  Google Scholar 

  80. Zaima, N., Hayasaka, T., Goto-Inoue, N., and Setou, M., Int. J. Mol. Sci., 2010, vol. 11, no. 12, p. 5041.

    Google Scholar 

  81. Hansen, H.T. and Janfelt, C., Anal. Chem., 2016, vol. 88, no. 23, p. 11513.

    CAS  PubMed  Google Scholar 

  82. Chen, R.B., Hui, L.M., Sturm, R.M., and Li, L.J., J. Am. Soc. Mass Spectrom., 2009, vol. 20, no. 6, p. 1068.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Gemperline, E., Jayaraman, D., Maeda, J., Ane, J.M., and Li, L.J., J. Am. Soc. Mass Spectrom., 2015, vol. 26, no. 1, p. 149.

    CAS  PubMed  Google Scholar 

  84. Khatib-Shahidi, S., Andersson, M., Herman, J.L., Gillespie, T.A., and Caprioli, R.M., Anal. Chem., 2006, vol. 78, no. 18, p. 6448.

    CAS  PubMed  Google Scholar 

  85. Goodwin, R.J.A., J. Proteomics, 2012, vol. 75, no. 16, p. 4893.

    CAS  PubMed  Google Scholar 

  86. Schwartz, S.A., Reyzer, M.L., and Caprioli, R.M., J. Mass Spectrom., 2003, vol. 38, no. 7, p. 699.

    CAS  PubMed  Google Scholar 

  87. Jones, E.A., Lockyer, N.P., Kordys, J., and Vickerman, J.C., J. Am. Soc. Mass Spectrom., 2007, vol. 18, no. 8, p. 1559.

    CAS  PubMed  Google Scholar 

  88. Anthony, A., Colurso, G.J., Bocan, T.M.A., and Doebler, J.A., Histochem. J., 1984, vol. 16, no. 1, p. 61.

    CAS  PubMed  Google Scholar 

  89. Bich, C., Havelund, R., Moellers, R., Touboul, D., Kollmer, F., Niehuis, E., Gilmore, I.S., and Brunelle, A., Anal. Chem., 2013, vol. 85, no. 16, p. 7745.

    CAS  PubMed  Google Scholar 

  90. Kawamoto, T., Arch. Histol. Cytol., 2003, vol. 66, no. 2, p. 123.

    PubMed  Google Scholar 

  91. Kutuzov, N., Gulin, A., Lyaskovskiy, V., Nadtochenko, V., and Maksimov, G., PLoS One, 2015, vol. 10, no. 11, e0142084.

    PubMed  PubMed Central  Google Scholar 

  92. Le, M.U.T., Son, J.G., Shon, H.K., Park, J.H., Lee, S.B., and Lee, T.G., Biointerphases, 2018, vol. 13, 03B414.

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 18-33-00940 and the Russian Science Foundation (project no. 17-76-20014, section “Analysis of tissue sections”) within the framework of the State Assignment AAAA-A19-119012990175-9.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Gulin.

Additional information

Translated by O. Zhukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gulin, A.A., Nadtochenko, V.A., Pogorelova, V.N. et al. Sample Preparation of Biological Tissues and Cells for the Time-of-Flight Secondary Ion Mass Spectrometry. J Anal Chem 75, 701–710 (2020). https://doi.org/10.1134/S106193482006009X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106193482006009X

Keywords:

Navigation