Skip to main content
Log in

An Enzyme-Induced Metallization-Based Electrochemical Signal Amplification Strategy for Ultrahigh Sensitive Alkaline Phosphatase Detection at Attomolar Concentrations

  • ARTICLES
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

A highly sensitive enzyme-induced metallization-based electrochemical signal amplification strategy was developed based on the integration of the enzyme-induced metallization reaction, Au nanoparticles (AuNPs)-induced silver deposition, chemically modified electrode and highly sensitive stripping voltammetry detection. The presence of alkaline phosphatase (ALP) catalyzed ascorbic acid 2-phosphate into ascorbic acid, which reduced Ag+ to Ag0 on the surface of the AuNPs/multi-walled carbon nanotubes/polyethyleneimine/glassy carbon electrode (AuNPs/MWNTs/PEI/GCE). As a result, the enzyme-generated product was accumulated on the surface of the AuNPs/MWNTs/PEI/GCE by means of silver deposition via this signal amplification strategy, which enhanced the detection signal dramatically. Amounts as low as 1 × 10–8 U/mL (corresponding to 10 aM) ALP can be detected using this strategy, which is about 4−7 orders of magnitude more sensitive than with other reported methods for ALP determination. In addition, this strategy can be applied to ALP detection in real complex samples, which shows great potential in the early diagnosis of diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Li, Y., Li, Y., Liu, Z., and Su, X., RSC Adv., 2014, vol. 4, p. 42825.

    Article  CAS  Google Scholar 

  2. Coleman, J.E., Annu. Rev. Biophys. Biomol. Struct., 1992, vol. 21, p. 441.

    Article  CAS  Google Scholar 

  3. Colombatto, P., Randone, A., Civitico, G., Monti Gorin, J., Dolci, L., Medaina, N., Oliveri, F., Verme, G., Marchiaro, G., Pagni, R., Karayiannis, P., Thomas, H.C., Hess, G., Bonino, F., and Brunetto, M.R., J. Viral Hepatitis, 1996, vol. 3, p. 301.

    Article  CAS  Google Scholar 

  4. Fernandez, N.J. and Kidney, B.A., Vet. Clin. Pathol., 2007, vol. 36, p. 223.

    Article  Google Scholar 

  5. Zhao, L., Xie, S., Song, X., Wei, J., Zhang, Z., and Li, X., Biosens. Bioelectron., 2017, vol. 91, p. 217.

    Article  CAS  Google Scholar 

  6. Li, C.M., Zhen, S.J., Wang, J., Li, Y.F., and Huang, C.Z., Biosens. Bioelectron., 2013, vol. 43, p. 366.

    Article  CAS  Google Scholar 

  7. Shi, D., Sun, Y., Lin, L., Shi, C., Wang, G., and Zhang, X., Analyst, 2016, vol. 141, p. 5549.

    Article  CAS  Google Scholar 

  8. Choi, Y., Ho, N.-H., and Tung, C.-H., Angew. Chem., Int. Ed., 2007, vol. 46, p. 707.

    Article  CAS  Google Scholar 

  9. Zhang, L., Zhao, J., Duan, M., Zhang, H., Jiang, J., and Yu, R., Anal. Chem., 2013, vol. 85, p. 3797.

    Article  CAS  Google Scholar 

  10. Hu, Z., Chen, J., Li, Y., Wang, Y., Zhang, Q., Hussain, E., Yang, M., Shahzad, S.A., Yu, D., and Yu, C., Talanta, 2017, vol. 169, p. 64.

    Article  CAS  Google Scholar 

  11. Li, S.J., Li, C.Y., Li, Y.F., Fei, J., Wu, P., Yang, B., Ou-Yang, J., and Nie, S.X., Anal. Chem., 2017, vol. 89, p. 6854.

    Article  CAS  Google Scholar 

  12. Freeman, R., Finder, T., Gill, R., and Willner, I., Nano. Lett., 2010, vol. 10, p. 2192.

    Article  CAS  Google Scholar 

  13. Wu, Z., Zhou, C.H., Pan, L.J., Zeng, T., Zhu, L., Pang, D.W., and Zhang, Z.L., Anal. Chem., 2016, vol. 88, p. 9166.

    Article  CAS  Google Scholar 

  14. Wang, J.H., Wang, K., Bartling, B., and Liu, C.C., Sensors, 2009, vol. 9, p. 8709.

    Article  CAS  Google Scholar 

  15. Goggins, S., Naz, C., Marsh, B.J., and Frost, C.G., Chem. Commun., 2015, vol. 51, p. 561.

    Article  CAS  Google Scholar 

  16. Dong, J., Li, Y., Zhang, M., Li, Z., Yan, T., and Qian, W., Anal. Methods, 2014, vol. 6, p. 9168.

    Article  CAS  Google Scholar 

  17. Ruan, C., Wang, W., and Gu, B., Anal. Chem., 2006, vol. 78, p. 3379.

    Article  CAS  Google Scholar 

  18. Sun, D.M., Hu, W.N., and Ma, W., J. Anal. Chem., 2011, vol. 66, p. 310.

    Article  CAS  Google Scholar 

  19. Wen, Y.P., Wen, W., Zhang, X.H., and Wang, S.F., Biosens. Bioelectron., 2016, vol. 79, p. 894.

    Article  CAS  Google Scholar 

  20. Wang, M., Wang, G.-X., Xiao, F.-N., Zhao, Y., Wang, K., and Xia, X.-H., Chem. Commun., 2013, vol. 49, p. 8788.

    Article  CAS  Google Scholar 

  21. Niwa, O., Xu, Y., Halsall, H.B., and Heineman, W.R., Anal. Chem., 1993, vol. 65, p. 1559.

    Article  CAS  Google Scholar 

  22. Jiang, H. and Wang, X., Anal. Chem., 2012, vol. 84, p. 6986.

    Article  CAS  Google Scholar 

  23. La Gal La Salle, A., Limoges, B., Degrand, C., and Brossier, P., Anal. Chem., 1995, vol. 67, p. 1245.

    Article  CAS  Google Scholar 

  24. Kazakeviciene, B., Valincius, G., Kazemekaite, M., and Razumas, V., Electroanalysis, 2008, vol. 20, p. 2235.

    Article  CAS  Google Scholar 

  25. Li, X., Zhou, C.-H., Zi, Q.-J., and Cao, Q.-E., J. Electroanal. Chem., 2016, vol. 780, p. 321.

    Article  CAS  Google Scholar 

  26. Willner, I., Baron, R., and Willner, B., Adv. Mater., 2006, vol. 18, p. 1109.

    Article  CAS  Google Scholar 

  27. Zhou, C.H., Zhao, J.Y., Pang, D.W., and Zhang, Z.L., Anal. Chem., 2014, vol. 86, p. 2752.

    Article  CAS  Google Scholar 

  28. Zhou, C.H., Wu, Z., Chen, J.J., Xiong, C., Chen, Z., Pang, D.W., and Zhang, Z.L., Chem.— Asian J., 2015, vol. 10, p. 1387.

    Article  CAS  Google Scholar 

  29. Chen, X., Chen, J., Zhang, H.-Y., Wang, F.-B., Wang, F.-F., Ji, X.-H., and He, Z.-K., Chin. J. Anal. Chem., 2016, vol. 44, p. 591.

    Article  CAS  Google Scholar 

  30. Zhao, Z.W., Zhu, W.P., Li, Z., Hui, J.J., Shen, G.L., and Yu, R.Q., Anal. Sci., 2012, vol. 28, p. 881.

    Article  CAS  Google Scholar 

  31. Wang, J., Zhang, Y.-Y., Zhao, W.-W., Xu, J.-J., and Chen, H.-Y., Electroanalysis, 2013, vol. 25, p. 951.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (21465025, 21505119), the Natural Science Foundation of Yunnan (2015FD002), the Postdoctoral’s Foundation of Yunnan University (W4030002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chuan-Hua Zhou or Qiu-E Cao.

Ethics declarations

The authors declare that there is no conflict of interests regarding the publication of this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chuan-Hua Zhou, Li, X., Zi, QJ. et al. An Enzyme-Induced Metallization-Based Electrochemical Signal Amplification Strategy for Ultrahigh Sensitive Alkaline Phosphatase Detection at Attomolar Concentrations. J Anal Chem 75, 812–819 (2020). https://doi.org/10.1134/S1061934820060192

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934820060192

Keywords:

Navigation