Skip to main content
Log in

Study on the influence of pre-stress time-characteristic on microstructure transformation in GH process

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Firstly, simulation is used to analyze the temperature curve in pre-stress hardening grinding (PSHG). Then, according to the start and the end time of martensitic transformation, three time nodes are selected to study the pre-stress time characteristic; they are 1 s, 3 s, and 7 s after grinding. The influence of pre-stress on the initial temperature and content of martensite transformation in cooling is analyzed; the results indicate the content of martensite increases over the pre-stressed unloading time. To test the theory, experiments of PSHG with different unloading times are carried out. The microstructure of the grinding hardening surface is observed and explored by scanning electron microscopy (SEM). Then, the SEM images are binarized to get the martensite content on the hardening surface. The experimental results show martensite content is consistent with the theoretical analysis. Lath martensite and flake martensite can also be found in these pictures. Flake martensite slightly increases while unloading at 7 s, as it forms at a lower temperature. So the pre-stress time characteristic influences both the martensite content and the morphology of martensite formed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Yang M, Li C, Zhang Y, Jia D, Li R, Hou Y, Cao H, Wang J (2019) Predictive model for minimum chip thickness and size effect in single diamond grain grinding of zirconia ceramics under different lubricating conditions [J]. Ceram Int 45(12):14908–14920

    Article  Google Scholar 

  2. Gao T, Zhang X, Li C, Zhang Y, Yang M, Jia D, Ji H, Zhao Y, Li R, Yao P, Zhu L (2020) Surface morphology evaluation of multi-angle 2D ultrasonic vibration integrated with nanofluid minimum quantity lubrication grinding [J]. J Manuf Process 51(1):44–61

    Article  Google Scholar 

  3. Yang M, Li C, Zhang Y, Jia D, Li R, Hou Y, Cao H (2019) Effect of friction coefficient on chip thickness models in ductile-regime grinding of zirconia ceramics [J]. Int J Adv Manuf Technol 102:2617–2632

    Article  Google Scholar 

  4. Sun C, Niu Y, Liu Z, Xiu S (2017) Study on the surface topography considering grinding chatter based on dynamics and reliability [J]. Int J Adv Manuf Technol 92:3273–3286

    Article  Google Scholar 

  5. Brinksmeier E, Brockhoff T (1996) Utilization of grinding heat as a new heat treatment process [J]. CIRP Ann Manuf Technol 45(1):283–286

    Article  Google Scholar 

  6. Zhang L, Ge P, Zhang J, Zhu Z, Luan Z (2007) Experimental and simulation studies on temperature field of 40Cr steel surface layer in grind-hardening [J]. Int J Abras Technol 1(2):187–197

    Article  Google Scholar 

  7. Zarudi I, Zhang L (2002) Mechanical property improvement of quenchable steel by grinding [J]. J Mater Sci 37(18):3935–3943

    Article  Google Scholar 

  8. Zhou N, Ru L, Pettersson R (2016) Surface integrity of 2304 duplex stainless steel after different grinding operations [J]. J Mater Processing Tech 229:294–304

    Article  Google Scholar 

  9. Bruni C, Celeghini M, Geiger M, Gabrielli F (2007) A study of techniques in the evaluation of springback and residual stress in hydroforming [J]. Int J Adv Manuf Technol 33(9-10):929–939

    Article  Google Scholar 

  10. Salonitis K, Kolios A (2015) Experimental and numerical study of grind-hardening-induced residual stresses on AISI 1045 Steel [J]. Int J Adv Manuf Technol 79(9-12):1443–1452

    Article  Google Scholar 

  11. Wang J, Liu F, Feng Y, Gang Z (2011) Shot peening simulation based on SPH method [J]. Int J Adv Manuf Technol 56(5-8):571–578

    Article  Google Scholar 

  12. Luh GC, Hwang RM (1998) Evaluating the effectiveness of vibratory stress relief by a modified hole-drilling method [J]. Int J Adv Manuf Technol 14(11):815–823

    Article  Google Scholar 

  13. Xiu S, Shi X (2015) Transformation mechanism of microstructure and residual stress within hardening layer in PSHG [J]. Journal of Advanced Mechanical Design Systems & Manufacturing 9(3):1–13

    Article  Google Scholar 

  14. Deng Y, Xiu S, Shi X, Sun C, Wang Y (2016) Study on the effect mechanisms of pre-stress on residual stress and surface roughness in PSHG [J]. Int J Adv Manuf Technol 88:3243–3256

    Article  Google Scholar 

  15. SHI X, XIU S, ZHANG X, WANG Y (2017) A study of PSHG and its characteristic mechanism of residual stress within a hardened layer [J]. Int J Adv Manuf Technol 88:863–877

    Article  Google Scholar 

  16. Kim NK, Guo C, Malkon S (1997) Heat flux distribution and energy partition in creep-feed grinding [J]. CIRP Ann Manuf Technol 46(1):227–232

    Article  Google Scholar 

  17. Zhou L, Huang ST, Zhang CY (2013) Numerical and experimental studies on the temperature field in precision grinding of SiCp/Al composites [J]. Int J Adv Manuf Technol 67(5-8):1007–1014

    Article  Google Scholar 

  18. Yao C, Wang T, Xiao W, Huang X, Ren J (2014) Experimental study on grinding force and grinding temperature of Aermet 100 steel in surface grinding [J]. J Mater Process Technol 214(11):2191–2199

    Article  Google Scholar 

  19. Rowe WB, Jin T (2001) Temperatures in high efficiency deep grinding (HEDG) [J]. CIRP Ann Manuf Technol 50(1):205–208

    Article  Google Scholar 

  20. Ramanath S, Ramaraj T, Shaw M (1987) What grinding swarf reveals [J]. CIRP Ann Manuf Technol 36(1):245–247

    Article  Google Scholar 

  21. Ramanath S, Shaw M (1988) Abrasive grain temperature at the beginning of a cut in fine grinding [J]. J Eng Ind 110(1):15–18

    Article  Google Scholar 

  22. Niu Y, Sun C, Pang G, XIu S. Study on the effect of pre-stress unloading time on surface integrity in PSHG process [J]. 2018,

    Book  Google Scholar 

  23. Reynolds J, Bever M (1952) On the reversal of the strain-induced martensitic transformation in the copper-zinc system [J]. JOM 4(10):1065–1066

    Article  Google Scholar 

  24. McReynolds A (1949) Effects of stress and deformation on the martensite transformation [J]. J Appl Phys 20(10):896–907

    Article  Google Scholar 

  25. Hsu T, Hongbing C, Shoufu L On thermodynamic calculation of MS and on driving force for martensitic transformations in Fe-C [J]. J Mater Sci 18(11):3206–3212

  26. Sun C, Liu Z, Lan D, Duan J, Xiu S Study on the influence of the grinding chatter on the workpiece’s microstructure transformation [J]. International Journal of Advanced Manufacturing Technology 96:3861–3879

  27. Tamura I (2015) Deformation-induced martensitic transformation and transformation-induced plasticity in steels [J]. Metal Sci 16(5):245–253

    Article  Google Scholar 

  28. Ledbetter H, Dunn ML Habit planes, inclusion theory, and twins [J]. Mater Sci Eng A 273-275(none):222–225

  29. Patel JR, Cohen M Criterion for the action of applied stress in the martensitic transformation [J]. 1(5):531–538

  30. Koistinen D, Marburger R (1959) A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels [J]. Acta Metall 7(1):59–60

    Article  Google Scholar 

  31. Sherman D, Yang B, Catalina A, Hattiangadi A, Zhao P, Chuzhoy L, Johnson M (2007) Modeling of microstructure evolution of a thermal transformation of lath martensite [C]. Mater Sci Forum 539-543:4795–4800

    Article  Google Scholar 

  32. Zuchang Z Martensitic Transformation (5) [J]. Heat Treatment Technol Equip 03:71–74

  33. Krauss G, Marder A (1971) The morphology of martensite in iron-carbon alloys [J]. Metall Trans A 2(9):2343–2357

    Article  Google Scholar 

Download references

Funding

This project is supported by the National Natural Science Foundation of China (Grant No. 51775101) and the Fundamental Research Funds for the Central Universities (N180306003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shichao Xiu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, Y., Yao, Y. & Xiu, S. Study on the influence of pre-stress time-characteristic on microstructure transformation in GH process. Int J Adv Manuf Technol 109, 335–344 (2020). https://doi.org/10.1007/s00170-020-05578-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-020-05578-2

Keywords

Navigation