Skip to main content
Log in

Hyperon–nucleon three-body forces and strangeness in neutron stars

  • Regular Article – Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Three-body forces acting on a \(\varLambda \) hyperon in a nuclear medium are investigated, with special focus on the so-called hyperon puzzle in neutron stars. The hyperon–nucleon two-body interaction deduced from SU(3) chiral effective field theory is employed at next-to-leading order. Hyperon–nucleon three-body forces are approximated using saturation by decuplet baryons and are transcribed to density-dependent effective two-body interactions. These together are taken as input in a Brueckner–Bethe–Goldstone equation with explicit treatment of the \(\varLambda N\leftrightarrow \varSigma N\) and \(\varLambda NN\leftrightarrow \varSigma NN\) coupled channels. Single-particle potentials of a \(\varLambda \) hyperon in symmetric nuclear matter and neutron matter are calculated. With parameters of the \(\varLambda NN\) three-body force constrained by hypernuclear phenomenology, extrapolations to high baryon density are performed. By comparison of the \(\varLambda \) and neutron chemical potentials at densities characteristic of the core of neutron stars it is found that the combined repulsive effects of two- and three-body correlations can make the appearance of \(\varLambda \) hyperons in neutron stars energetically unfavourable, thus potentially offering a possible answer to a longstanding query.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All data produced in the course of this work have gone into the numerical results presented in Figs. 5-10.]

Notes

  1. We remind that due to direct and exchange contributions to the density-dependent effective YN potentials, these have to be weighted with a statistical factor 1/2 when added to the two-body potentials [37].

References

  1. P. Demorest, T. Pennucci, S. Ransom, M. Roberts, J. Hessels, Nature 467, 1081 (2010)

    ADS  Google Scholar 

  2. J. Antoniadis et al., Science 340, 6131 (2013)

    ADS  Google Scholar 

  3. E. Fonseca et al., Astrophys. J. 832, 167 (2016)

    ADS  Google Scholar 

  4. H.T. Cromartie et al., Nat. Astron. 4, 72 (2019)

    ADS  Google Scholar 

  5. B.P. Abbott et al. (LIGO & Virgo Collaborations), Phys. Rev. Lett. 119, 161101 (2017)

  6. E.R. Most, L.R. Weih, L. Rezzolla, J. Schaffner-Bielich, Phys. Rev. Lett. 120, 261103 (2018)

    ADS  Google Scholar 

  7. S. De, D. Finstad, J.M. Lattimer, D.A. Brown, E. Berger, C.M. Biwer, Phys. Rev. Lett. 121, 091102 (2018)

    ADS  Google Scholar 

  8. A. Akmal, V.R. Pandharipande, D.G. Ravenhall, Phys. Rev. C 58, 1804 (1998)

    ADS  Google Scholar 

  9. M. Drews, W. Weise, Phys. Rev. C 91, 035802 (2015)

    ADS  Google Scholar 

  10. M. Drews, W. Weise, Prog. Part. Nucl. Phys. 93, 69 (2017)

    ADS  Google Scholar 

  11. B. Friman, W. Weise, Phys. Rev. C 100, 065807 (2019)

    ADS  Google Scholar 

  12. G. Baym, T. Hatsuda, T. Kojo, P.D. Powell, Y. Song, T. Takatsuka, Rep. Prog. Phys. 81, 056902 (2018)

    ADS  Google Scholar 

  13. G. Baym, S. Furusawa, T. Hatsuda, T. Kojo, H. Tagashi, Astrophys. J. 885, 42 (2019)

    ADS  Google Scholar 

  14. L. McLerran, S. Reddy, Phys. Rev. Lett. 122, 122701 (2019)

    ADS  Google Scholar 

  15. Y. Fujimoto, K. Fukushima, K. Murase, Phys. Rev. D 101, 054016 (2020)

    ADS  Google Scholar 

  16. T. Takatsuka et al., Eur. Phys. J. A 13, 213 (2002)

    ADS  Google Scholar 

  17. S. Nishizaki, T. Takatsuka, Y. Yamamoto, Prog. Theor. Phys. 108, 703 (2002)

    ADS  Google Scholar 

  18. T. Takatsuka, S. Nishizaki, R. Tamagaki, Prog. Theor. Phys. Suppl. 174, 80 (2008)

    ADS  Google Scholar 

  19. J.R. Stone, P.A.M. Guichon, H.H. Matevosyan, A.W. Thomas, Nucl. Phys. A 792, 341 (2007)

    ADS  Google Scholar 

  20. J.R. Stone, P.A.M. Guichon, A.W. Thomas, arXiv:1012.2912 [nucl-th]

  21. H. Djapo, B.J. Schaefer, J. Wambach, Phys. Rev. C 81, 035803 (2010)

    ADS  Google Scholar 

  22. I. Vidaña, D. Logoteta, C. Providencia, A. Polls, I. Bombaci, Eur. Phys. Lett. 94, 11002 (2011)

    ADS  Google Scholar 

  23. Y. Yamamoto, T. Furumoto, N. Yasutake, ThA Rijken, Phys. Rev. C 88, 022801 (2013)

    ADS  Google Scholar 

  24. T. Hell, W. Weise, Phys. Rev. C 90, 045801 (2014)

    ADS  Google Scholar 

  25. Y. Yamamoto, T. Furumoto, N. Yasutake, ThA Rijken, Phys. Rev. C 90, 045805 (2014)

    ADS  Google Scholar 

  26. P.F. Bedaque, A.W. Steiner, Phys. Rev. C 92, 025803 (2015)

    ADS  Google Scholar 

  27. D. Lonardoni, A. Lovato, S. Gandolfi, F. Pederiva, Phys. Rev. Lett. 114, 092301 (2015)

    ADS  Google Scholar 

  28. D. Logoteta, I. Vidaña, I. Bombaci, Eur. Phys. J. A 55, 207 (2019)

    ADS  Google Scholar 

  29. V.A. Ambartsumyan, G.S. Saakyan, Sov. Astron. 4, 187 (1960)

    ADS  Google Scholar 

  30. S. Petschauer, J. Haidenbauer, N. Kaiser, U.-G. Meißner, W. Weise, Front. Phys. 8, 12 (2020)

    Google Scholar 

  31. J. Haidenbauer, S. Petschauer, N. Kaiser, U.-G. Meißner, A. Nogga, W. Weise, Nucl. Phys. A 915, 24 (2013)

    ADS  Google Scholar 

  32. J. Haidenbauer, U.-G. Meißner, A. Nogga, Eur. Phys. J. A 56, 91 (2020)

    ADS  Google Scholar 

  33. S. Petschauer, N. Kaiser, J. Haidenbauer, U.-G. Meißner, W. Weise, Phys. Rev. C 93, 014001 (2016)

    ADS  Google Scholar 

  34. S. Petschauer, J. Haidenbauer, N. Kaiser, U.-G. Meißner, W. Weise, Nucl. Phys. A 957, 347 (2017)

    ADS  Google Scholar 

  35. S. Petschauer, J. Haidenbauer, N. Kaiser, U.-G. Meißner, W. Weise, Eur. Phys. J. A 52, 15 (2016)

    ADS  Google Scholar 

  36. J. Haidenbauer, U.-G. Meißner, N. Kaiser, W. Weise, Eur. Phys. J. A 53, 121 (2017)

    ADS  Google Scholar 

  37. M. Kohno, Phys. Rev. C 97, 035206 (2018)

    ADS  Google Scholar 

  38. J. Haidenbauer, U.-G. Meißner, Phys. Rev. C 72, 044005 (2005)

    ADS  Google Scholar 

  39. T.A. Rijken, V.G.J. Stoks, Y. Yamamoto, Phys. Rev. C 59, 21 (1999)

    ADS  Google Scholar 

  40. T. Fujita, H. Miyazawa, Prog. Theor. Phys. 17, 360 (1957)

    ADS  Google Scholar 

  41. S. Fritsch, N. Kaiser, W. Weise, Nucl. Phys. A 750, 259 (2005)

    ADS  Google Scholar 

  42. J.W. Holt, N. Kaiser, W. Weise, Phys. Rev. C 81, 024002 (2010)

    ADS  Google Scholar 

  43. B. Day, Rev. Mod. Phys. 39, 719 (1967)

    ADS  Google Scholar 

  44. H.-J. Schulze, M. Baldo, U. Lombardo, J. Cugnon, A. Lejeune, Phys. Rev. C 57, 704 (1998)

    ADS  Google Scholar 

  45. I. Vidana, A. Polls, A. Ramos, M. Horth-Jensen, V.G.J. Stoks, Phys. Rev. C 61, 025802 (2000)

    ADS  Google Scholar 

  46. M. Kohno, Y. Fujiwara, T. Fujita, C. Nakamoto, Y. Suzuki, Nucl. Phys. 185, 229 (2000)

    Google Scholar 

  47. D.R. Entem, R. Machleidt, Phys. Rev. C 68, 041001 (2001)

    ADS  Google Scholar 

  48. A. Gal, E.V. Hungerford, D.J. Millener, Rev. Mod. Phys. 88, 035004 (2016)

    ADS  Google Scholar 

Download references

Acknowledgements

We thank Johann Haidenbauer for helpful and instructive communications. This work is supported in part by DFG and NSFC (CRC110), and the DFG Excellence Cluster ORIGINS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norbert Kaiser.

Additional information

Communicated by Vittorio Somà

Appendices

Appendix A: Angular average in the Bethe–Goldstone equation

Here, we present details of the angular averaging procedure that precedes the derivation of Eq. (15). Total and relative momenta for two baryons \(B_1\) and \(B_2\) are introduced by

$$\begin{aligned} \mathbf {P} = \mathbf {p}_1 + \mathbf {p}_2,\quad \mathbf {k} = \frac{\xi _{12}\mathbf {p}_1-\mathbf {p}_2}{1+\xi _{12}},\quad \xi _{12} = \frac{M_{2}}{M_{1}}. \end{aligned}$$
(24)

A standard approximation is applied by replacing Q/e by the ratio of angle-averaged quantities, \(\bar{Q}/\bar{e}\). The Pauli operator, averaged over the angle \(\theta \) between \(\mathbf {P}\) and \(\mathbf {k}\), is given by

$$\begin{aligned} \bar{Q}_{\nu }(P,k)&= \frac{1}{2}\int _{-1}^1\!\mathrm d\cos \theta \ \varTheta \big (|\mathbf {p}_1| - k_F^{(1)}\big )\varTheta \big (|\mathbf {p}_2| - k_F^{(2)}\big )\nonumber \\&= [0|\frac{[-1|z_1|1]+[-1|z_2|1]}{2}|1] , \end{aligned}$$
(25)

with

$$\begin{aligned} z_1&= \frac{1+\xi _{12}}{2kP}\bigg \{\left( \frac{1}{1+\xi _{12}}P\right) ^2+k^2-(k_F^{(1)})^2\bigg \}, \nonumber \\ z_2&= \frac{1+1/\xi _{12}}{2kP} \bigg \{\left( \frac{\xi _{12}}{1+\xi _{12}}P\right) ^2 + k^2-(k_F^{(2)})^2\bigg \}, \end{aligned}$$
(26)

and the notation \([a|b|c]\equiv {\text {max}}(a,{\text {min}}(b,c))\) introduced in Ref. [44]. The angle-averaged energy denominator is given by

$$\begin{aligned} \bar{e}_{\nu }(P,k;\omega ) =&\omega - \frac{P^2}{2M_\nu }-\frac{k^2}{2\mu _\nu } -M_\nu \nonumber \\&- {\text {Re}}U_{B_1}(\bar{p}_1)- {\text {Re}}U_{B_2}(\bar{p}_2) , \end{aligned}$$
(27)

with \(M_{\nu }=M_1+M_2\) and \(\mu _{\nu }=M_1 M_2/(M_1+M_2)\). The angle-average is done for the arguments of the single particle potentials \(U_{B_i}\) of the intermediate baryons:

$$\begin{aligned} \bar{p}_1&= \left( \tfrac{1}{(1+\xi _{12})^2} P^2 + k^2 + 2\tfrac{1}{1+\xi _{12}} P k\, \overline{\cos \theta }\right) ^{1/2} , \nonumber \\ \bar{p}_2&= \left( \tfrac{\xi ^2_{12}}{(1+\xi _{12})^2} P^2 + k^2 - 2\tfrac{\xi _{12}}{1+\xi _{12}} P k\, \overline{\cos \theta }\right) ^{1/2} , \end{aligned}$$
(28)

with

$$\begin{aligned} \overline{\cos \theta }&= \frac{ \int _{-1}^1\!\mathrm d\cos \theta \, \cos \theta \, Q(\mathbf {P},\mathbf {k}) }{ \int _{-1}^1\!\mathrm d\cos \theta \, Q(\mathbf {P},\mathbf {k}) } \nonumber \\&= \frac{1}{2}\big ([-1|z_2|1]-[-1|z_1|1]\big ), \end{aligned}$$
(29)

where \(Q(\mathbf {P},\mathbf {k})\) is the exact Pauli blocking operator.

It is common practice to introduce a further simplification, replacing the squared momenta \(P^2=P^2(\mathbf {p}_1, \mathbf {k})\) and \(p^2_2=p^2_2(\mathbf {p}_1, \mathbf {k})\) entering the Bethe–Goldstone equation by their angle averages:

$$\begin{aligned} \bar{P}^2(p_1,k)&= \frac{\int _{|\mathbf {p}_2|\le k_F^{(2)}}\!\mathrm d\cos \vartheta \, P^2(p_1,k,\cos \vartheta )}{\int _{|\mathbf {p}_2|\le k_F^{(2)}}\!\mathrm d\cos \vartheta } \nonumber \\&= (1+\xi _{12})^2\left[ p_1^2+k^2-p_1k(1+[-1|x_0|1])\right] , \nonumber \\ \bar{p}_2^2(p_1,k)&= \frac{\xi _{12}}{1+\xi _{12}}\bar{P}^2(p_1,k) + (1+\xi _{12})k^2 -\xi _{12}\,p_1^2 , \end{aligned}$$
(30)

where \(\vartheta \) is the angle between \(\mathbf {p}_1\) and \(\mathbf {k}\), and one finds

$$\begin{aligned} x_0 = \frac{\xi _{12}^2p_1^2+(1+\xi _{12})^2k^2-(k_F^{(2)})^2}{2\xi _{12}(1+\xi _{12})p_1k} . \end{aligned}$$
(31)

Note that baryon \(B_2\) in the initial state is within its Fermi sea.

The weight function W(pk) that appears in the calculation of the single-particle potential \(U_B(p)\) via Eq. (17) is given by

$$\begin{aligned} W(p,k)&= \frac{1}{4\pi }\int _{|\mathbf {p}_2|\le k_F^{(2)}}\!\mathrm d\varOmega _k = \frac{1}{2}(1-[-1|x_0|1]) . \end{aligned}$$
(32)

The integration boundaries, \(k_\mathrm {min}\) and \(k_\mathrm {max}\), of the relative momentum are determined by the condition \(W(k_1,k) = 0\), which leads to

$$\begin{aligned} k_\mathrm {min}&= {\text {max}}\left( 0, \frac{-k_F^{(2)}+\xi _{12} p}{1+\xi _{12}} \right) ,\ k_\mathrm {max} = \frac{k_F^{(2)}+\xi _{12} p}{1+\xi _{12}} . \end{aligned}$$
(33)

Appendix B: Some technical details

Equations (15) and (17) are solved numerically by alternately iterating both equations until the potentials \(U_B\) converge. For certain kinematical conditions, e.g. involving large momenta in the initial state, the energy denominator in Eq. (15) vanishes, giving rise to a pole in the Bethe–Goldstone equation. To make the integral numerically manageable, the principal value prescription is utilized:

$$\begin{aligned} -\!\!\!\!\!\!\int _0^\infty \!dk \frac{N(k)}{D(k)} = \int _0^\infty \!dk \left( \frac{N(k)}{D(k)}-\frac{N(k_0)}{D^\prime (k_0)} \frac{2k_0}{k^2-k_0^2}\right) , \end{aligned}$$
(34)

for a simple pole at \(k_0\), i.e. \(D(k_0)=0\) and \(D'(k_0)\ne 0\). This prescription eventually meets its limits at densities beyond \(3.5\,\rho _0\), once second-order poles begin to show up.

For densities \(\rho > 2\rho _0\) in pure neutron matter, slow convergence of \(U_B\) occurs because of increasingly strong input potentials. Convergence is improved by averaging \(U_B(k)\) over subsequent iterations. High-density calculations occasionally require intervention by estimating an appropriate starting point for iterations from lower-density results. However, numerical stability is generally not guaranteed any more for \(\rho > \rho _c \simeq 3.5\,\rho _0\). For densities \(\rho > \rho _c\) we use the power series extrapolation in Eq. (19), fitted to numerically stable results at \(\rho \lesssim \rho _c\) as described in the text.

As discussed in Ref. [37], the cutoff \(\lambda \) in the chiral input potential causes numerical oscillations of \(U_B(k)\) for momenta \(k > \lambda \). These oscillations tend to slow down the convergence of \(U_B\) and are of no physical relevance. They are suppressed by the additional cutoff factor \(\exp [-(k/\lambda '_{spp})^6]\) attached to the single-particle potentials as described in Sect. 4.1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gerstung, D., Kaiser, N. & Weise, W. Hyperon–nucleon three-body forces and strangeness in neutron stars. Eur. Phys. J. A 56, 175 (2020). https://doi.org/10.1140/epja/s10050-020-00180-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-020-00180-2

Navigation