Skip to main content
Log in

X-Ray Properties of TDEs

  • Published:
Space Science Reviews Aims and scope Submit manuscript

A Correction to this article was published on 02 February 2021

This article has been updated

Abstract

Observational astronomy of tidal disruption events (TDEs) began with the detection of X-ray flares from quiescent galaxies during the ROSAT all-sky survey of 1990–1991. The flares complied with theoretical expectations, having high peak luminosities (\(L_{\mathrm{x}}\) up to \(\ge 4\times 10^{44}~\text{erg/s}\)), a thermal spectrum with \(kT\sim \text{few} \times 10^{5}~\text{K}\), and a decline on timescales of months to years, consistent with a diminishing return of stellar debris to a black hole of mass \(10^{6\text{--}8}~M_{\odot }\). These measurements gave solid proof that the nuclei of quiescent galaxies are habitually populated by a super-massive black hole. Beginning in 2000, XMM-Newton, Chandra and Swift have discovered further TDEs which have been monitored closely at multiple wavelengths. A general picture has emerged of, initially near-Eddington accretion, powering outflows of highly-ionised material, giving way to a calmer sub-Eddington phase, where the flux decays monotonically, and finally a low accretion rate phase with a harder X-ray spectrum indicative of the formation of a disk corona. There are exceptions to this rule though which at the moment are not well understood. A few bright X-ray TDEs have been discovered in optical surveys but in general X-ray TDEs show little excess emission in the optical band, at least at times coincident with the X-ray flare. X-ray TDEs are powerful new probes of accretion physics down to the last stable orbit, revealing the conditions necessary for launching jets and winds. Finally we see that evidence is mounting for nuclear and non-nuclear intermediate mass black holes based on TDE flares which are relatively hot and/or fast.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Change history

Notes

  1. In this chapter we include publications written up until mid-2019.

  2. Note, that broad and narrow optical emission lines can also be temporarily excited by the TDE itself (e.g. Komossa et al. 2008; Wang et al. 2012). However, these lines differ from classical NLRs and can be distinguished if there is more than one post-flare optical spectrum, since they are not permanent but will change and fade away quickly.

  3. This luminosity is even higher, if a powerlaw model is fit, and if there is absorption from the event’s host galaxy.

  4. Similar behaviour has now been detected in AT2018fyk (Wevers et al. 2019a) and AT2019azh (Liu et al. 2019).

  5. Note that the classification of IGR J12580+0134 as a TDE has been questioned based on its WISE colours, pre-flare data and hardness ratio evolution (see A.17 of Auchettl et al. 2017).

  6. Although Irwin et al. (2015) make a case for the 2–10 keV emission coming from the inverse Compton component of the jet in IGR J12580+0134.

  7. Note the highly reddened, absorbed host galaxy of this event.

  8. Here the viscous timescale is defined as the time it takes for material to accrete onto a black hole, and depends on the height and radius of the disk and the orbital period (Guillochon and Ramirez-Ruiz 2015).

  9. An alternative explanation was given by van Velzen et al. (2019a) who suggested that the properties of these sources are not a result of reprocessing but are due to a viscously spreading, unobscured accretion disk. This work was extended into the X-ray regime in Jonker et al. (2019), who infer the existence of a long-lived accretion disk to explain the relatively high late-time X-ray luminosity of three optically-selected TDEs.

  10. Here \(L_{\mathrm{iso}}\) is defined as the mean isotropic luminosity, after correcting for beaming, emitted by the event in the interval where the light curve contains between 5% and 95% of the total emitted luminosity (see Auchettl et al. 2017 and references therein for an explanation of the derivation of isotropic luminosity).

  11. Note that the cluster survey of (Maksym et al. 2010) uses a self-consistent set of assumptions which are not affected by this change.

  12. All the surveys use very strong TDE candidates when calculating the rates except for Khabibullin and Sazonov (2014) which identified one very likely TDE (RBS 1032) and two possible TDEs in their sample. If only RBS 1032 had been adopted here then the survey TDE rates with common assumptions would agree to a factor \(\approx 3\).

References

  • K.D. Alexander, E. Berger, J. Guillochon, B.A. Zauderer, P.K.G. Williams, Discovery of an outflow from radio observations of the tidal disruption event ASASSN-14li. Astrophys. J. Lett. 819, 25 (2016). https://doi.org/10.3847/2041-8205/819/2/L25

    Article  ADS  Google Scholar 

  • K.D. Alexander, M.H. Wieringa, E. Berger, R.D. Saxton, S. Komossa, Radio observations of the tidal disruption event XMMSL1 J0740-85. Astrophys. J. 837, 153 (2017). https://doi.org/10.3847/1538-4357/aa6192

    Article  ADS  Google Scholar 

  • N. Arav, Z.-Y. Li, M.C. Begelman, Radiative acceleration in outflows from broad absorption-line quasi-stellar objects. II. Wind models. Astrophys. J. 432, 62 (1994). https://doi.org/10.1086/174549

    Article  ADS  Google Scholar 

  • I. Arcavi, A. Gal-Yam, M. Sullivan, Y.-C. Pan, S.B. Cenko, A. Horesh, E.O. Ofek, A. De Cia, L. Yan, C.-W. Yang, D.A. Howell, D. Tal, S.R. Kulkarni, S.P. Tendulkar, S. Tang, D. Xu, A. Sternberg, J.G. Cohen, J.S. Bloom, P.E. Nugent, M.M. Kasliwal, D.A. Perley, R.M. Quimby, A.A. Miller, C.A. Theissen, R.R. Laher, A continuum of H- to He-rich tidal disruption candidates with a preference for E+A galaxies. Astrophys. J. 793, 38 (2014). https://doi.org/10.1088/0004-637X/793/1/38

    Article  ADS  Google Scholar 

  • K. Auchettl, J. Guillochon, E. Ramirez-Ruiz, New physical insights about tidal disruption events from a comprehensive observational inventory at X-ray wavelengths. Astrophys. J. 838, 149 (2017). https://doi.org/10.3847/1538-4357/aa633b

    Article  ADS  Google Scholar 

  • K. Auchettl, E. Ramirez-Ruiz, J. Guillochon, A comparison of the X-ray emission from tidal disruption events with those of active galactic nuclei. Astrophys. J. 852, 37 (2018). https://doi.org/10.3847/1538-4357/aa9b7c

    Article  ADS  Google Scholar 

  • S. Ayal, M. Livio, T. Piran, Tidal disruption of a solar-type star by a supermassive black hole. Astrophys. J. 545, 772–780 (2000). https://doi.org/10.1086/317835

    Article  ADS  Google Scholar 

  • N. Bade, S. Komossa, M. Dahlem, Detection of an extremely soft X-ray outburst in the HII-like nucleus of NGC 5905. Astron. Astrophys. 309, L35 (1996). 1996A%26A...309L..35B

    ADS  Google Scholar 

  • J.A. Baldwin, M.M. Phillips, R. Terlevich, Classification parameters for the emission-line spectra of extragalactic objects. Publ. Astron. Soc. Pac. 93, 5–19 (1981). https://doi.org/10.1086/130766

    Article  ADS  Google Scholar 

  • F.E. Bauer, E. Treister, K. Schawinski, S. Schulze, B. Luo, D.M. Alexander, W.N. Brandt, A. Comastri, F. Forster, R. Gilli, D.A. Kann, K. Maeda, K. Nomoto, M. Paolillo, P. Ranalli, D.P. Schneider, O. Shemmer, M. Tanaka, A. Tolstov, N. Tominaga, P. Tozzi, C. Vignali, J. Wang, Y. Xue, G. Yang, A new, faint population of X-ray transients. Mon. Not. R. Astron. Soc. 467, 4841–4857 (2017). https://doi.org/10.1093/mnras/stx417

    Article  ADS  Google Scholar 

  • J.S. Bloom, D. Giannios, B.D. Metzger, S.B. Cenko, D.A. Perley, N.R. Butler, N.R. Tanvir, A.J. Levan, P.T. O’Brien, L.E. Strubbe, F. De Colle, E. Ramirez-Ruiz, W.H. Lee, S. Nayakshin, E. Quataert, A.R. King, A. Cucchiara, J. Guillochon, G.C. Bower, A.S. Fruchter, A.N. Morgan, A.J. van der Horst, A possible relativistic jetted outburst from a massive black hole fed by a tidally disrupted star. Science 333, 203 (2011). https://doi.org/10.1126/science.1207150

    Article  ADS  Google Scholar 

  • C. Bonnerot, W. Lu, Simulating realistic disc formation in tidal disruption events. ArXiv e-prints, 1906-05865 (2019)

  • C. Bonnerot, E.M. Rossi, G. Lodato, Long-term stream evolution in tidal disruption events. Mon. Not. R. Astron. Soc. 464, 2816–2830 (2017). https://doi.org/10.1093/mnras/stw2547

    Article  ADS  Google Scholar 

  • E.W. Bonning, L. Cheng, G.A. Shields, S. Salviander, K. Gebhardt, Accretion disk temperatures and continuum colors in QSOs. Astrophys. J. 659, 211–217 (2007). https://doi.org/10.1086/510712

    Article  ADS  Google Scholar 

  • G.C. Bower, B.D. Metzger, S.B. Cenko, J.M. Silverman, J.S. Bloom, Late-time radio emission from X-ray-selected tidal disruption events. Astrophys. J. 763(2), 84 (2013). https://doi.org/10.1088/0004-637X/763/2/84

    Article  ADS  Google Scholar 

  • J.S. Bright, R.P. Fender, S.E. Motta, K. Mooley, Y.C. Perrott, S. van Velzen, S. Carey, J. Hickish, N. Razavi-Ghods, D. Titterington, P. Scott, K. Grainge, A. Scaife, T. Cantwell, C. Rumsey, Long-term radio and X-ray evolution of the tidal disruption event ASASSN-14li. Mon. Not. R. Astron. Soc. 475(3), 4011–4019 (2018). https://doi.org/10.1093/mnras/sty077

    Article  ADS  Google Scholar 

  • P.J. Brown, Y. Yang, J. Cooke, M. Olaes, R.M. Quimby, D. Baade, N. Gehrels, P. Hoeflich, J. Maund, J. Mould, F. Patat, L. Wang, J.C. Wheeler, ASASSN-15lh: a superluminous ultraviolet rebrightening observed by Swift and Hubble. ArXiv e-prints (2016)

  • J.S. Brown, T.W.-S. Holoien, K. Auchettl, K.Z. Stanek, C.S. Kochanek, B.J. Shappee, J.L. Prieto, D. Grupe, The long term evolution of ASASSN-14li. Mon. Not. R. Astron. Soc. 466, 4904–4916 (2017). https://doi.org/10.1093/mnras/stx033

    Article  ADS  Google Scholar 

  • D.N. Burrows, J.A. Kennea, G. Ghisellini, V. Mangano, B. Zhang, K.L. Page, M. Eracleous, P. Romano, T. Sakamoto, A.D. Falcone, J.P. Osborne, S. Campana, A.P. Beardmore, A.A. Breeveld, M.M. Chester, R. Corbet, S. Covino, J.R. Cummings, P. D’Avanzo, V. D’Elia, P. Esposito, P.A. Evans, D. Fugazza, J.M. Gelbord, K. Hiroi, S.T. Holland, K.Y. Huang, M. Im, G. Israel, Y. Jeon, Y.-B. Jeon, H.D. Jun, N. Kawai, J.H. Kim, H.A. Krimm, F.E. Marshall, P. Mészáros, H. Negoro, N. Omodei, W.-K. Park, J.S. Perkins, M. Sugizaki, H.-I. Sung, G. Tagliaferri, E. Troja, Y. Ueda, Y. Urata, R. Usui, L.A. Antonelli, S.D. Barthelmy, G. Cusumano, P. Giommi, A. Melandri, M. Perri, J.L. Racusin, B. Sbarufatti, M.H. Siegel, N. Gehrels, Relativistic jet activity from the tidal disruption of a star by a massive black hole. Nature 476, 421–424 (2011). https://doi.org/10.1038/nature10374

    Article  ADS  Google Scholar 

  • J.K. Cannizzo, N. Gehrels, A new paradigm for gamma-ray bursts: long-term accretion rate modulation by an external accretion disk. Astrophys. J. 700, 1047–1058 (2009). https://doi.org/10.1088/0004-637X/700/2/1047

    Article  ADS  Google Scholar 

  • J.K. Cannizzo, H.M. Lee, J. Goodman, The disk accretion of a tidally disrupted star onto a massive black hole. Astrophys. J. 351, 38 (1990). 1990ApJ...351...38C

    Article  ADS  Google Scholar 

  • J.K. Cannizzo, E. Troja, G. Lodato, GRB 110328A/Swift J164449.3+573451: the tidal obliteration of a deeply plunging star? Astrophys. J. 742, 32 (2011). https://doi.org/10.1088/0004-637X/742/1/32

    Article  ADS  Google Scholar 

  • N. Cappelluti, M. Ajello, P. Rebusco, S. Komossa, A. Bongiorno, C. Clemens, M. Salvato, P. Esquej, T. Aldcroft, J. Greiner, H. Quintana, A candidate tidal disruption event in the Galaxy cluster Abell 3571. Astron. Astrophys. 495(2), 9–12 (2009). http://www.aanda.org/10.1051/0004-6361/200811479

    Article  ADS  Google Scholar 

  • S.B. Cenko, J.S. Bloom, S.R. Kulkarni, L.E. Strubbe, A.A. Miller, N.R. Butler, R.M. Quimby, A. Gal-Yam, E.O. Ofek, E. Quataert, L. Bildsten, D. Poznanski, D.A. Perley, A.N. Morgan, A.V. Filippenko, D.A. Frail, I. Arcavi, S. Ben-Ami, A. Cucchiara, C.D. Fassnacht, Y. Green, I.M. Hook, D.A. Howell, D.J. Lagattuta, N.M. Law, M.M. Kasliwal, P.E. Nugent, J.M. Silverman, M. Sullivan, S.P. Tendulkar, O. Yaron, Ptf10iya: a short-lived, luminous flare from the nuclear region of a star-forming galaxy. Mon. Not. R. Astron. Soc. 420(3), 2684–2699 (2012). 2012MNRAS.420.2684C

    Article  ADS  Google Scholar 

  • X. Chen, P. Madau, A. Sesana, F.K. Liu, Enhanced tidal disruption rates from massive black hole binaries. Astrophys. J. Lett. 697, 149 (2009). 2009ApJ...697L.149C

    Article  ADS  Google Scholar 

  • R. Chornock, E. Berger, S. Gezari, B.A. Zauderer, A. Rest, L. Chomiuk, A. Kamble, A.M. Soderberg, I. Czekala, J. Dittmann, M. Drout, R.J. Foley, W. Fong, M.E. Huber, R.P. Kirshner, A. Lawrence, R. Lunnan, G.H. Marion, G. Narayan, A.G. Riess, K.C. Roth, N.E. Sanders, D. Scolnic, S.J. Smartt, K. Smith, C.W. Stubbs, J.L. Tonry, W.S. Burgett, K.C. Chambers, H. Flewelling, K.W. Hodapp, N. Kaiser, E.A. Magnier, D.C. Martin, J.D. Neill, P.A. Price, R. Wainscoat, The ultraviolet-bright, slowly declining transient PS1-11af as a partial tidal disruption event. Astrophys. J. 780, 44 (2014). https://doi.org/10.1088/0004-637X/780/1/44

    Article  ADS  Google Scholar 

  • D. Clausen, M. Eracleous, Probing intermediate-mass black holes with optical emission lines from tidally disrupted white dwarfs. Astrophys. J. 726(1), 34 (2011). 2011ApJ...726...34C

    Article  ADS  Google Scholar 

  • M. Colpi, Massive binary black holes in galactic nuclei and their path to coalescence. Space Sci. Rev. 183(1-4), 189–221 (2014). https://doi.org/10.1007/s11214-014-0067-1

    Article  ADS  Google Scholar 

  • E.R. Coughlin, P.J. Armitage, C. Nixon, M.C. Begelman, Tidal disruption events from supermassive black hole binaries. Mon. Not. R. Astron. Soc. 465, 3840–3864 (2017). https://doi.org/10.1093/mnras/stw2913

    Article  ADS  Google Scholar 

  • D.M. Crenshaw, S.B. Kraemer, A. Boggess, S.P. Maran, R.F. Mushotzky, C.-C. Wu, Intrinsic absorption lines in Seyfert 1 galaxies. I. Ultraviolet spectra from the Hubble Space Telescope. Astrophys. J. 516(2), 750–768 (1999). https://doi.org/10.1086/307144

    Article  ADS  Google Scholar 

  • L. Dai, J.C. McKinney, M.C. Miller, Soft X-ray temperature tidal disruption events from stars on deep plunging orbits. Astrophys. J. Lett. 812, 39 (2015). https://doi.org/10.1088/2041-8205/812/2/L39

    Article  ADS  Google Scholar 

  • L. Dai, J.C. McKinney, N. Roth, E. Ramirez-Ruiz, M.C. Miller, A unified model for tidal disruption events. Astrophys. J. Lett. 859, 20 (2018). https://doi.org/10.3847/2041-8213/aab429

    Article  ADS  Google Scholar 

  • C. Done, S.W. Davis, C. Jin, O. Blaes, M. Ward, Intrinsic disc emission and the soft X-ray excess in active galactic nuclei. Mon. Not. R. Astron. Soc. 420, 1848–1860 (2012). https://doi.org/10.1111/j.1365-2966.2011.19779.x

    Article  ADS  Google Scholar 

  • J.L. Donley, W.N. Brandt, M. Eracleous, T. Boller, Large-amplitude X-ray outbursts from galactic nuclei: a systematic survey using ROSAT archival data. Astron. J. 124, 1308 (2002). http://adsabs.harvard.edu/abs/2002AJ....124.1308D

    Article  ADS  Google Scholar 

  • P. Esquej, R.D. Saxton, M.J. Freyberg, A.M. Read, B. Altieri, M. Sanchez-Portal, G. Hasinger, Candidate tidal disruption events from the XMM-Newton slew survey. Astron. Astrophys. 462, 49 (2007). 2007A%26A...462L..49E

    Article  ADS  Google Scholar 

  • P. Esquej, R.D. Saxton, S. Komossa, A.M. Read, M.J. Freyberg, G. Hasinger, D.A. García-Hernández, H. Lu, J. Rodriguez Zaurín, M. Sánchez-Portal, H. Zhou, Evolution of tidal disruption candidates discovered by XMM-Newton. Astron. Astrophys. 489, 543 (2008). 2008A%26A...489..543E

    Article  ADS  Google Scholar 

  • C.R. Evans, C.S. Kochanek, The tidal disruption of a star by a massive black hole. Astrophys. J. Lett. 346, 13–16 (1989). https://doi.org/10.1086/185567

    Article  ADS  Google Scholar 

  • I.N. Evans, F.A. Primini, K.J. Glotfelty, C.S. Anderson, N.R. Bonaventura, J.C. Chen, J.E. Davis, S.M. Doe, J.D. Evans, G. Fabbiano, E.C. Galle, D.G. Gibbs II, J.D. Grier, R.M. Hain, D.M. Hall, P.N. Harbo, X.H. He, J.C. Houck, M. Karovska, V.L. Kashyap, J. Lauer, M.L. McCollough, J.C. McDowell, J.B. Miller, A.W. Mitschang, D.L. Morgan, A.E. Mossman, J.S. Nichols, M.A. Nowak, D.A. Plummer, B.L. Refsdal, A.H. Rots, A. Siemiginowska, B.A. Sundheim, M.S. Tibbetts, D.W. Van Stone, S.L. Winkelman, P. Zografou, The Chandra source catalog. Astrophys. J. Suppl. Ser. 189, 37–82 (2010). https://doi.org/10.1088/0067-0049/189/1/37

    Article  ADS  Google Scholar 

  • C. Evans, P. Laguna, M. Eracleous, Ultra-close encounters of stars with massive black holes: tidal disruption events with prompt hyperaccretion. Astrophys. J. Lett. 805, 19 (2015). https://doi.org/10.1088/2041-8205/805/2/L19

    Article  ADS  Google Scholar 

  • G. Fabbiano, The X-ray properties of normal galaxies. Publ. Astron. Soc. Pac. 98, 525–543 (1986). https://doi.org/10.1086/131790

    Article  ADS  Google Scholar 

  • L. Ferrarese, D. Merritt, A fundamental relation between supermassive black holes and their host galaxies. Astrophys. J. Lett. 539(1), 9–12 (2000). https://doi.org/10.1086/312838

    Article  ADS  Google Scholar 

  • D.K. Galloway, M.P. Muno, J.M. Hartman, D. Psaltis, D. Chakrabarty, Thermonuclear (type I) X-ray bursts observed by the Rossi X-Ray Timing Explorer. Astrophys. J. Suppl. Ser. 179, 360–422 (2008). https://doi.org/10.1086/592044

    Article  ADS  Google Scholar 

  • N. Gehrels, G. Chincarini, P. Giommi, K.O. Mason, J.A. Nousek, A.A. Wells, N.E. White, S.D. Barthelmy, D.N. Burrows, L.R. Cominsky, K.C. Hurley, F.E. Marshall, P. Mészáros, P.W.A. Roming, L. Angelini, L.M. Barbier, T. Belloni, S. Campana, P.A. Caraveo, M.M. Chester, O. Citterio, T.L. Cline, M.S. Cropper, J.R. Cummings, A.J. Dean, E.D. Feigelson, E.E. Fenimore, D.A. Frail, A.S. Fruchter, G.P. Garmire, K. Gendreau, G. Ghisellini, J. Greiner, J.E. Hill, S.D. Hunsberger, H.A. Krimm, S.R. Kulkarni, P. Kumar, F. Lebrun, N.M. Lloyd-Ronning, C.B. Markwardt, B.J. Mattson, R.F. Mushotzky, J.P. Norris, J. Osborne, B. Paczynski, D.M. Palmer, H.-S. Park, A.M. Parsons, J. Paul, M.J. Rees, C.S. Reynolds, J.E. Rhoads, T.P. Sasseen, B.E. Schaefer, A.T. Short, A.P. Smale, I.A. Smith, L. Stella, G. Tagliaferri, T. Takahashi, M. Tashiro, L.K. Townsley, J. Tueller, M.J.L. Turner, M. Vietri, W. Voges, M.J. Ward, R. Willingale, F.M. Zerbi, W.W. Zhang, The Swift gamma-ray burst mission. Astrophys. J. 611(2), 1005–1020 (2004). https://doi.org/10.1086/422091

    Article  ADS  Google Scholar 

  • S. Gezari, J.P. Halpern, S. Komossa, D. Grupe, K.M. Leighly, Follow-up Hubble Space Telescope/Space Telescope Imaging Spectroscopy of three candidate tidal disruption events. Astrophys. J. 592(1), 42–51 (2003). https://doi.org/10.1086/375553

    Article  ADS  Google Scholar 

  • S. Gezari, T. Heckman, S.B. Cenko, M. Eracleous, K. Forster, T.S. Gonçalves, D.C. Martin, P. Morrissey, S.G. Neff, M. Seibert, D. Schiminovich, T.K. Wyder, Luminous thermal flares from quiescent supermassive black holes. Astrophys. J. 698, 1367–1379 (2009). https://doi.org/10.1088/0004-637X/698/2/1367. 2009ApJ...698.1367G

    Article  ADS  Google Scholar 

  • S. Gezari, R. Chornock, A. Rest, M.E. Huber, K. Forster, E. Berger, P.J. Challis, J.D. Neill, D.C. Martin, T. Heckman, A. Lawrence, C. Norman, G. Narayan, R.J. Foley, G.H. Marion, D. Scolnic, L. Chomiuk, A. Soderberg, K. Smith, R.P. Kirshner, A.G. Riess, S.J. Smartt, C.W. Stubbs, J.L. Tonry, W.M. Wood-Vasey, W.S. Burgett, K.C. Chambers, T. Grav, J.N. Heasley, N. Kaiser, R.-P. Kudritzki, E.A. Magnier, J.S. Morgan, P.A. Price, An ultraviolet-optical flare from the tidal disruption of a helium-rich stellar core. Nature 485, 217–220 (2012). https://doi.org/10.1038/nature10990

    Article  ADS  Google Scholar 

  • S. Gezari, R. Chornock, A. Lawrence, A. Rest, D.O. Jones, E. Berger, P.M. Challis, G. Narayan, PS1-10jh continues to follow the fallback accretion rate of a tidally disrupted star. Astrophys. J. Lett. 815, 5 (2015). https://doi.org/10.1088/2041-8205/815/1/L5

    Article  ADS  Google Scholar 

  • S. Gezari, S.B. Cenko, I. Arcavi, X-ray brightening and UV fading of tidal disruption event ASASSN-15oi. Astrophys. J. Lett. 851, 47 (2017). https://doi.org/10.3847/2041-8213/aaa0c2

    Article  ADS  Google Scholar 

  • K.K. Ghosh, V. Suleymanov, I. Bikmaev, S. Shimansky, N. Sakhibullin, RBS 1032: a dwarf-nucleated spheroidal galaxy with an intermediate-mass black hole hosted in a globular cluster. Mon. Not. R. Astron. Soc. 371(4), 1587–1593 (2006). https://doi.org/10.1111/j.1365-2966.2006.10723.x

    Article  ADS  Google Scholar 

  • A. Glennie, P.G. Jonker, R.P. Fender, T. Nagayama, M.L. Pretorius, Two fast X-ray transients in archival Chandra data. Mon. Not. R. Astron. Soc. 450, 3765–3770 (2015). https://doi.org/10.1093/mnras/stv801

    Article  ADS  Google Scholar 

  • J.E. Greene, Low-mass black holes as the remnants of primordial black hole formation. Nat. Commun. 3, 1304 (2012). https://doi.org/10.1038/ncomms2314

    Article  ADS  Google Scholar 

  • J. Greiner, R. Schwarz, S. Zharikov, M. Orio, Rx j1420.4+5334—another tidal disruption event? Astron. Astrophys. 362, 25 (2000). 2000A%26A...362L..25G

    ADS  Google Scholar 

  • J.E. Grindlay, Fast X-ray transients and gamma-ray bursts: constraints on beaming. Astrophys. J. 510(2), 710–714 (1999). https://doi.org/10.1086/306617

    Article  ADS  Google Scholar 

  • D. Grupe, H.-C. Thomas, K.M. Leighly, RX J1624.9+7554: a new X-ray transient AGN. Astron. Astrophys. 350, 31–34 (1999)

    ADS  Google Scholar 

  • J. Guillochon, E. Ramirez-Ruiz, Hydrodynamical simulations to determine the feeding rate of black holes by the tidal disruption of stars: the importance of the impact parameter and stellar structure. Astrophys. J. 767, 25 (2013). https://doi.org/10.1088/0004-637X/767/1/25

    Article  ADS  Google Scholar 

  • J. Guillochon, E. Ramirez-Ruiz, A dark year for tidal disruption events. Astrophys. J. 809, 166 (2015). https://doi.org/10.1088/0004-637X/809/2/166

    Article  ADS  Google Scholar 

  • J. Guillochon, H. Manukian, E. Ramirez-Ruiz, PS1-10jh: the disruption of a main-sequence star of near-solar composition. Astrophys. J. 783, 23 (2014). https://doi.org/10.1088/0004-637X/783/1/23

    Article  ADS  Google Scholar 

  • J.P. Halpern, S. Gezari, S. Komossa, Follow-up Chandra observations of three candidate tidal disruption events. Astrophys. J. 604, 572–578 (2004). https://doi.org/10.1086/381937

    Article  ADS  Google Scholar 

  • J. Heise, A.C. Brinkman, J. Schrijver, R. Mewe, E.H.B.M. Gronenschild, A.J.F. den Boggende, J. Grindlay, Evidence for X-ray emission from flare stars observed by ANS. Astrophys. J. Lett. 202, 73–76 (1975). https://doi.org/10.1086/181984

    Article  ADS  Google Scholar 

  • T.W.-S. Holoien, C.S. Kochanek, J.L. Prieto, D. Grupe, P. Chen, D. Godoy-Rivera, K.Z. Stanek, B.J. Shappee, S. Dong, J.S. Brown, U. Basu, J.F. Beacom, D. Bersier, J. Brimacombe, E.K. Carlson, E. Falco, E. Johnston, B.F. Madore, G. Pojmanski, M. Seibert, ASASSN-15oi: a rapidly evolving, luminous tidal disruption event at 216 Mpc. Mon. Not. R. Astron. Soc. 463, 3813–3828 (2016a). https://doi.org/10.1093/mnras/stw2272

    Article  ADS  Google Scholar 

  • T.W.-S. Holoien, C.S. Kochanek, J.L. Prieto, K.Z. Stanek, S. Dong, B.J. Shappee, D. Grupe, J.S. Brown, U. Basu, J.F. Beacom, D. Bersier, J. Brimacombe, A.B. Danilet, E. Falco, Z. Guo, J. Jose, G.J. Herczeg, F. Long, G. Pojmanski, G.V. Simonian, D.M. Szczygieł, T.A. Thompson, J.R. Thorstensen, R.M. Wagner, P.R. Woźniak, Six months of multiwavelength follow-up of the tidal disruption candidate ASASSN-14li and implied TDE rates from ASAS-SN. Mon. Not. R. Astron. Soc. 455, 2918–2935 (2016b). https://doi.org/10.1093/mnras/stv2486

    Article  ADS  Google Scholar 

  • T.W.-S. Holoien, M.E. Huber, B.J. Shappee, M. Eracleous, K. Auchettl, J.S. Brown, M.A. Tucker, K.C. Chambers, C.S. Kochanek, K.Z. Stanek, A. Rest, D. Bersier, R.S. Post, G. Aldering, K.A. Ponder, J.D. Simon, E. Kankare, D. Dong., G. Hallinan, J. Bulger, T.B. Lowe, E.A. Magnier, A.S.B. Schultz, C.Z. Waters, M. Willman, D. Wright, D.R. Young, S. Dong, J.L. Prieto, T.A. Thompson, L. Denneau, H. Flewelling, A.N. Heinze, S.J. Smartt, K.W. Smith, B. Stalder, J.L. Tonry, H. Weiland, PS18kh: a new tidal disruption event with a non-axisymmetric accretion disk. ArXiv e-prints (2018a)

  • T.W.-S. Holoien, J.S. Brown, K. Auchettl, C.S. Kochanek, J.L. Prieto, B.J. Shappee, J. Van Saders, The unusual late-time evolution of the tidal disruption event ASASSN-15oi. Mon. Not. R. Astron. Soc. 480, 5689–5703 (2018b). https://doi.org/10.1093/mnras/sty2273

    Article  ADS  Google Scholar 

  • J.A. Irwin, R.N. Henriksen, M. Krause, Q.D. Wang, T. Wiegert, E.J. Murphy, G. Heald, E. Perlman, CHANG-ES V: nuclear outflow in a Virgo cluster spiral after a tidal disruption event. Astrophys. J. 809(2), 172 (2015). https://doi.org/10.1088/0004-637X/809/2/172

    Article  ADS  Google Scholar 

  • J.A. Irwin, W.P. Maksym, G.R. Sivakoff, A.J. Romanowsky, D. Lin, T. Speegle, I. Prado, D. Mildebrath, J. Strader, J. Liu, J.M. Miller, Ultraluminous X-ray bursts in two ultracompact companions to nearby elliptical galaxies. Nature 538, 356–358 (2016). https://doi.org/10.1038/nature19822

    Article  ADS  Google Scholar 

  • F. Jansen, D. Lumb, B. Altieri, J. Clavel, M. Ehle, C. Erd, C. Gabriel, M. Guainazzi, P. Gondoin, R. Much, R. Munoz, M. Santos, N. Schartel, D. Texier, G. Vacanti, XMM-Newton observatory. I. The spacecraft and operations. Astron. Astrophys. 365, 1–6 (2001). https://doi.org/10.1051/0004-6361:20000036

    Article  ADS  Google Scholar 

  • P.G. Jonker, M. Heida, M.A.P. Torres, J.C.A. Miller-Jones, A.C. Fabian, E.M. Ratti, G. Miniutti, D.J. Walton, T.P. Roberts, The nature of the bright ULX X-2 in NGC 3921: a Chandra position and HST candidate counterpart. Astrophys. J. 758(1), 28 (2012). https://doi.org/10.1088/0004-637X/758/1/28

    Article  ADS  Google Scholar 

  • P.G. Jonker, A. Glennie, M. Heida, T. Maccarone, S. Hodgkin, G. Nelemans, J.C.A. Miller-Jones, M.A.P. Torres, R. Fender, Discovery of a new kind of explosive X-ray transient near M86. Astrophys. J. 779, 14 (2013). https://doi.org/10.1088/0004-637X/779/1/14

    Article  ADS  Google Scholar 

  • P.G. Jonker, N.C. Stone, A. Generozov, S. van Velzen, B. Metzger, Implications from late-time X-ray detections of optically selected tidal disruption events: state changes, unification, and detection rates. ArXiv e-prints, 1906-12236 (2019)

  • E. Kara, L. Dai, C.S. Reynolds, T. Kallman, Ultrafast outflow in tidal disruption event ASASSN-14li. Mon. Not. R. Astron. Soc. 474, 3593–3598 (2018). https://doi.org/10.1093/mnras/stx3004

    Article  ADS  Google Scholar 

  • G. Kauffmann, T.M. Heckman, C. Tremonti, J. Brinchmann, S. Charlot, S.D.M. White, S.E. Ridgway, J. Brinkmann, M. Fukugita, P.B. Hall, Ž. Ivezić, G.T. Richards, D.P. Schneider, The host galaxies of active galactic nuclei. Mon. Not. R. Astron. Soc. 346(4), 1055–1077 (2003). https://doi.org/10.1111/j.1365-2966.2003.07154.x

    Article  ADS  Google Scholar 

  • L.J. Kewley, C.A. Heisler, M.A. Dopita, S. Lumsden, Optical classification of southern warm infrared galaxies. Astrophys. J. Suppl. Ser. 132(1), 37–71 (2001). https://doi.org/10.1086/318944

    Article  ADS  Google Scholar 

  • I. Khabibullin, S. Sazonov, Stellar tidal disruption candidates found by cross-correlating the ROSAT bright source catalogue and XMM-Newton observations. Mon. Not. R. Astron. Soc. 444(2), 1041–1053 (2014). https://doi.org/10.1093/mnras/stu1491

    Article  ADS  Google Scholar 

  • I. Khabibullin, S. Sazonov, R. Sunyaev, SRG/eROSITA prospects for the detection of stellar tidal disruption flares. Mon. Not. R. Astron. Soc. 437(1), 327–337 (2014). https://doi.org/10.1093/mnras/stt1889

    Article  ADS  Google Scholar 

  • S. Komossa, Ludwig Biermann award lecture: X-ray evidence for supermassive black holes at the centers of nearby, non-active galaxies. Rev. Mod. Astron. 15, 27 (2002)

    ADS  Google Scholar 

  • S. Komossa, The extremes of (X-ray) variability among galaxies: flares from stars tidally disrupted by supermassive black holes, in The Interplay Among Black Holes, Stars and ISM in Galactic Nuclei, ed. by T. Storchi-Bergmann, L.C. Ho, H.R. Schmitt. IAU Symposium, vol. 222 (2004), pp. 45–48. https://doi.org/10.1017/S1743921304001425

    Chapter  Google Scholar 

  • S. Komossa, Growing black holes: observational evidence for stellar tidal disruption events, in Growing Black Holes: Accretion in a Cosmological Context, ed. by A. Merloni, S. Nayakshin, R.A. Sunyaev (2005), pp. 159–163. https://doi.org/10.1007/11403913_27

    Chapter  Google Scholar 

  • S. Komossa, N. Bade, The giant X-ray outbursts in NGC 5905 and IC 3599: follow-up observations and outburst scenarios. Astron. Astrophys. 343, 775–787 (1999)

    ADS  Google Scholar 

  • S. Komossa, M. Dahlem, X-ray outbursts from nearby ‘normal’ and active galaxies. A review, new radio observations, and an X-ray search for further tidal disruption flares. ArXiv Astrophysics e-prints (2001)

  • S. Komossa, J. Greiner, Discovery of a giant and luminous X-ray outburst from the optically inactive galaxy pair RX J1242.6-1119. Astron. Astrophys. 349, 45–48 (1999)

    ADS  Google Scholar 

  • S. Komossa, D. Merritt, Tidal disruption flares from recoiling supermassive black holes. Astrophys. J. 683(1), 21–24 (2008). http://stacks.iop.org/1538-4357/683/i=1/a=L21

    Article  ADS  Google Scholar 

  • S. Komossa, J.A. Zensus, Compact object mergers: observations of supermassive binary black holes and stellar tidal disruption events, in Star Clusters and Black Holes in Galaxies Across Cosmic Time, ed. by Y. Meiron, S. Li, F.-K. Liu, R. Spurzem. IAU Symposium, vol. 312 (2016), pp. 13–25. https://doi.org/10.1017/S1743921315007395

    Chapter  Google Scholar 

  • S. Komossa, J. Halpern, N. Schartel, G. Hasinger, M. Santos-Lleo, P. Predehl, A huge drop in the X-ray luminosity of the nonactive galaxy RX J1242.6-1119A, and the first postflare spectrum: testing the tidal disruption scenario. Astrophys. J. Lett. 603, 17 (2004). 2004ApJ...603L..17K

    Article  ADS  Google Scholar 

  • S. Komossa, H. Zhou, T. Wang, M. Ajello, J. Ge, J. Greiner, H. Lu, M. Salvato, R. Saxton, H. Shan, D. Xu, W. Yuan, Discovery of superstrong, fading, iron line emission and double-peaked Balmer lines of the galaxy SDSS J095209.56+214313.3: the light echo of a huge flare. Astrophys. J. 678(1), 13–16 (2008). 2008ApJ...678L..13K

    Article  ADS  Google Scholar 

  • S. Komossa, H. Zhou, A. Rau, M. Dopita, A. Gal-Yam, J. Greiner, J. Zuther, M. Salvato, D. Xu, H. Lu, NTT, Spitzer, and Chandra spectroscopy of SDSSJ095209.56+214313.3: the most luminous coronal-line supernova ever observed, or a stellar tidal disruption event? Astrophys. J. 701(1), 105–121 (2009). https://doi.org/10.1088/0004-637X/701/1/105

    Article  ADS  Google Scholar 

  • A.J. Levan, N.R. Tanvir, S.B. Cenko, D.A. Perley, K. Wiersema, J.S. Bloom, A.S. Fruchter, A.d.U. Postigo, P.T. O’Brien, N. Butler, A.J. van der Horst, G. Leloudas, A.N. Morgan, K. Misra, G.C. Bower, J. Farihi, R.L. Tunnicliffe, M. Modjaz, J.M. Silverman, J. Hjorth, C. Thöne, A. Cucchiara, J.M.C. Cerón, A.J. Castro-Tirado, J.A. Arnold, M. Bremer, J.P. Brodie, T. Carroll, M.C. Cooper, P.A. Curran, R.M. Cutri, J. Ehle, D. Forbes, J. Fynbo, J. Gorosabel, J. Graham, D.I. Hoffman, S. Guziy, P. Jakobsson, A. Kamble, T. Kerr, M.M. Kasliwal, C. Kouveliotou, D. Kocevski, N.M. Law, P.E. Nugent, E.O. Ofek, D. Poznanski, R.M. Quimby, E. Rol, A.J. Romanowsky, R. Sánchez-Ramírez, S. Schulze, N. Singh, L. van Spaandonk, R.L.C. Starling, R.G. Strom, J.C. Tello, O. Vaduvescu, P.J. Wheatley, R.A.M.J. Wijers, J.M. Winters, D. Xu, An extremely luminous panchromatic outburst from the nucleus of a distant galaxy. Science 333, 199 (2011). https://doi.org/10.1126/science.1207143

    Article  ADS  Google Scholar 

  • A.J. Levan, N.R. Tanvir, R.L.C. Starling, K. Wiersema, K.L. Page, D.A. Perley, S. Schulze, G.A. Wynn, R. Chornock, J. Hjorth, S.B. Cenko, A.S. Fruchter, P.T. O’Brien, G.C. Brown, R.L. Tunnicliffe, D. Malesani, P. Jakobsson, D. Watson, E. Berger, D. Bersier, B.E. Cobb, S. Covino, A. Cucchiara, A. de Ugarte Postigo, D.B. Fox, A. Gal-Yam, P. Goldoni, J. Gorosabel, L. Kaper, T. Krühler, R. Karjalainen, J.P. Osborne, E. Pian, R. Sánchez-Ramírez, B. Schmidt, I. Skillen, G. Tagliaferri, C. Thöne, O. Vaduvescu, R.A.M.J. Wijers, B.A. Zauderer, A new population of ultra-long duration gamma-ray bursts. Astrophys. J. 781, 13 (2014). https://doi.org/10.1088/0004-637X/781/1/13

    Article  ADS  Google Scholar 

  • A.J. Levan, N.R. Tanvir, G.C. Brown, B.D. Metzger, K.L. Page, S.B. Cenko, P.T. O’Brien, J.D. Lyman, K. Wiersema, E.R. Stanway, A.S. Fruchter, D.A. Perley, J.S. Bloom, Late time multi-wavelength observations of Swift J1644+5734: a luminous optical/IR bump and quiescent X-ray emission. Astrophys. J. 819, 51 (2016). https://doi.org/10.3847/0004-637X/819/1/51

    Article  ADS  Google Scholar 

  • L.-X. Li, R. Narayan, K. Menou, The giant X-ray flare of NGC 5905: tidal disruption of a star, a brown dwarf, or a planet? Astrophys. J. 576, 753 (2002). 2002ApJ...576..753L

    Article  ADS  Google Scholar 

  • D. Lin, E.R. Carrasco, D. Grupe, N.A. Webb, D. Barret, S.A. Farrell, Discovery of an ultrasoft X-ray transient source in the 2XMM catalog: a tidal disruption event candidate. Astrophys. J. 738, 52 (2011). https://doi.org/10.1088/0004-637X/738/1/52

    Article  ADS  Google Scholar 

  • D. Lin, P.W. Maksym, J.A. Irwin, S. Komossa, N.A. Webb, O. Godet, D. Barret, D. Grupe, S.D.J. Gwyn, An ultrasoft X-ray flare from 3XMM J152130.7+074916: a tidal disruption event candidate. Astrophys. J. 811, 43 (2015). https://doi.org/10.1088/0004-637X/811/1/43

    Article  ADS  Google Scholar 

  • D. Lin, J. Guillochon, S. Komossa, E. Ramirez-Ruiz, J.A. Irwin, W.P. Maksym, D. Grupe, O. Godet, N.A. Webb, D. Barret, B.A. Zauderer, P.-A. Duc, E.R. Carrasco, S.D.J. Gwyn, A likely decade-long sustained tidal disruption event. Nat. Astron. 1, 0033 (2017a). https://doi.org/10.1038/s41550-016-0033

    Article  ADS  Google Scholar 

  • D. Lin, O. Godet, L.C. Ho, D. Barret, N.A. Webb, J.A. Irwin, Large decay of X-ray flux in 2XMM J123103.2+110648: evidence for a tidal disruption event. Mon. Not. R. Astron. Soc. 468, 783–789 (2017b). https://doi.org/10.1093/mnras/stx489

    Article  ADS  Google Scholar 

  • D. Lin, J. Strader, E.R. Carrasco, D. Page, A.J. Romanowsky, J. Homan, J.A. Irwin, R.A. Remillard, O. Godet, N.A. Webb, H. Baumgardt, R. Wijnands, D. Barret, P.-A. Duc, J.P. Brodie, S.D.J. Gwyn, A luminous X-ray outburst from an intermediate-mass black hole in an off-centre star cluster. Nat. Astron. 2, 656–661 (2018a). https://doi.org/10.1038/s41550-018-0493-1

    Article  ADS  Google Scholar 

  • D. Lin, J. Strader, E.R. Carrasco, O. Godet, D. Grupe, N.A. Webb, D. Barret, J.A. Irwin, Multiwavelength follow-up observations of the tidal disruption event candidate 2XMMi J184725.1-631724. Mon. Not. R. Astron. Soc. 474, 3000–3008 (2018b). https://doi.org/10.1093/mnras/stx2940

    Article  ADS  Google Scholar 

  • Q.Z. Liu, J. van Paradijs, E.P.J. van den Heuvel, A catalogue of high-mass X-ray binaries. Astron. Astrophys. Suppl. Ser. 147, 25–49 (2000). https://doi.org/10.1051/aas:2000288

    Article  ADS  Google Scholar 

  • Q.Z. Liu, J. van Paradijs, E.P.J. van den Heuvel, A catalogue of low-mass X-ray binaries. Astron. Astrophys. 368, 1021–1054 (2001). https://doi.org/10.1051/0004-6361:20010075

    Article  ADS  Google Scholar 

  • F.K. Liu, S. Li, X. Chen, Interruption of tidal-disruption flares by supermassive black hole binaries. Astrophys. J. 706(1), 133–137 (2009). https://doi.org/10.1088/0004-637X/706/1/L133

    Article  ADS  Google Scholar 

  • F.K. Liu, S. Li, S. Komossa, A milliparsec supermassive black hole binary candidate in the galaxy SDSS J120136.02+300305.5. Astrophys. J. 786, 103 (2014). https://doi.org/10.1088/0004-637X/786/2/103

    Article  ADS  Google Scholar 

  • X.-L. Liu, L.-M. Dou, R.-F. Shen, J.-H. Chen, The UV/optical peak and X-ray brightening in TDE candidate AT2019azh: a case of stream-stream collision and delayed accretion. ArXiv e-prints, 1912-06081 (2019)

  • G. Lodato, Challenges in the modeling of tidal disruption events lightcurves, in European Physical Journal Web of Conferences. European Physical Journal Web of Conferences, vol. 39 (2012), p. 01001. https://doi.org/10.1051/epjconf/20123901001

    Chapter  Google Scholar 

  • G. Lodato, E.M. Rossi, Multiband light curves of tidal disruption events. Mon. Not. R. Astron. Soc. 410, 359–367 (2011). https://doi.org/10.1111/j.1365-2966.2010.17448.x

    Article  ADS  Google Scholar 

  • A. Loeb, A. Ulmer, Optical appearance of the debris of a star disrupted by a massive black hole. Astrophys. J. 489(2), 573–578 (1997). https://doi.org/10.1086/304814

    Article  ADS  Google Scholar 

  • M. MacLeod, J. Guillochon, E. Ramirez-Ruiz, The tidal disruption of giant stars and their contribution to the flaring supermassive black hole population. Astrophys. J. 757(2), 134 (2012). https://doi.org/10.1088/0004-637X/757/2/134. 2012ApJ...757..134M

    Article  ADS  Google Scholar 

  • M. MacLeod, J. Guillochon, E. Ramirez-Ruiz, D. Kasen, S. Rosswog, Optical thermonuclear transients from tidal compression of white dwarfs as tracers of the low end of the massive black hole mass function. Astrophys. J. 819, 3 (2016). https://doi.org/10.3847/0004-637X/819/1/3

    Article  ADS  Google Scholar 

  • K. Makishima, Y. Maejima, K. Mitsuda, H.V. Bradt, R.A. Remillard, I.R. Tuohy, R. Hoshi, M. Nakagawa, Simultaneous X-ray and optical observations of GX 339-4 in an X-ray high state. Astrophys. J. 308, 635–643 (1986). https://doi.org/10.1086/164534

    Article  ADS  Google Scholar 

  • W.P. Maksym, M.P. Ulmer, M. Eracleous, A tidal disruption flare in A1689 from an archival X-ray survey of galaxy clusters. Astrophys. J. 722(2), 1035–1050 (2010). 2010ApJ...722.1035M

    Article  ADS  Google Scholar 

  • W.P. Maksym, M.P. Ulmer, M.C. Eracleous, L. Guennou, L.C. Ho, A tidal flare candidate in Abell 1795. Mon. Not. R. Astron. Soc. 435(3), 1904–1927 (2013). 2013MNRAS.435.1904M

    Article  ADS  Google Scholar 

  • W.P. Maksym, D. Lin, J.A. Irwin, RBS 1032: a tidal disruption event in another dwarf galaxy? Astrophys. J. Lett. 792, 29 (2014a). https://doi.org/10.1088/2041-8205/792/2/L29

    Article  ADS  Google Scholar 

  • W.P. Maksym, M.P. Ulmer, K.C. Roth, J.A. Irwin, R. Dupke, L.C. Ho, W.C. Keel, C. Adami, Deep spectroscopy of the \(M_{V} \sim -14.8\) host galaxy of a tidal disruption flare in A1795. Mon. Not. R. Astron. Soc. 444, 866–873 (2014b). https://doi.org/10.1093/mnras/stu1485

    Article  ADS  Google Scholar 

  • V. Mangano, D.N. Burrows, B. Sbarufatti, J.K. Cannizzo, The definitive X-ray light curve of Swift J164449.3+573451. Astrophys. J. 817, 103 (2016). https://doi.org/10.3847/0004-637X/817/2/103

    Article  ADS  Google Scholar 

  • N.J. McConnell, C.-P. Ma, Revisiting the scaling relations of black hole masses and host galaxy properties. Astrophys. J. 764, 184 (2013). https://doi.org/10.1088/0004-637X/764/2/184

    Article  ADS  Google Scholar 

  • B.D. Metzger, N.C. Stone, A bright year for tidal disruptions. Mon. Not. R. Astron. Soc. 461, 948–966 (2016). https://doi.org/10.1093/mnras/stw1394

    Article  ADS  Google Scholar 

  • R. Mewe, E.H.B.M. Gronenschild, G.H.J. van den Oord, Calculated X-radiation from optically thin plasmas. V. Astron. Astrophys. Suppl. Ser. 62, 197–254 (1985)

    ADS  Google Scholar 

  • M.J. Middleton, J.C.A. Miller-Jones, S. Markoff, R. Fender, M. Henze, N. Hurley-Walker, A.M.M. Scaife, T.P. Roberts, D. Walton, J. Carpenter, Bright radio emission from an ultraluminous stellar-mass microquasar in M 31. Nature 493(7431), 187–190 (2013). https://doi.org/10.1038/nature11697

    Article  ADS  Google Scholar 

  • J.M. Miller, J.S. Kaastra, M.C. Miller, M.T. Reynolds, G. Brown, S.B. Cenko, J.J. Drake, S. Gezari, J. Guillochon, K. Gultekin, J. Irwin, A. Levan, D. Maitra, W.P. Maksym, R. Mushotzky, P. O’Brien, F. Paerels, J. de Plaa, E. Ramirez-Ruiz, T. Strohmayer, N. Tanvir, Flows of X-ray gas reveal the disruption of a star by a massive black hole. Nature 526, 542–545 (2015). https://doi.org/10.1038/nature15708

    Article  ADS  Google Scholar 

  • S. Mineo, M. Gilfanov, R. Sunyaev, X-ray emission from star-forming galaxies – I. High-mass X-ray binaries. Mon. Not. R. Astron. Soc. 419, 2095–2115 (2012). https://doi.org/10.1111/j.1365-2966.2011.19862.x

    Article  ADS  Google Scholar 

  • G. Miniutti, R.D. Saxton, P.M. Rodríguez-Pascual, A.M. Read, P. Esquej, M. Colless, P. Dobbie, M. Spolaor, A high Eddington-ratio, true Seyfert 2 galaxy candidate: implications for broad-line region models. Mon. Not. R. Astron. Soc. 433, 1764–1777 (2013). https://doi.org/10.1093/mnras/stt850

    Article  ADS  Google Scholar 

  • B. Mockler, J. Guillochon, E. Ramirez-Ruiz, Weighing black holes using tidal disruption events. ArXiv e-prints (2018)

  • K. Nandra, K.A. Pounds, GINGA observations of the X-ray spectra of Seyfert galaxies. Mon. Not. R. Astron. Soc. 268, 405 (1994). https://doi.org/10.1093/mnras/268.2.405

    Article  ADS  Google Scholar 

  • H. Netzer, The Physics and Evolution of Active Galactic Nuclei (2013)

    Book  Google Scholar 

  • H. Netzer, Bolometric correction factors for active galactic nuclei. Mon. Not. R. Astron. Soc. 488(4), 5185–5191 (2019). https://doi.org/10.1093/mnras/stz2016

    Article  ADS  Google Scholar 

  • M. Nikołajuk, R. Walter, Tidal disruption of a super-Jupiter by a massive black hole. Astron. Astrophys. 552, 75 (2013). 2013A%26A...552A..75N

    Article  ADS  Google Scholar 

  • J. Nishimura, K. Mitsuda, M. Itoh, Comptonization of soft X-ray photons in an optically thin hot plasma. Publ. Astron. Soc. Jpn. 38, 819–830 (1986)

    ADS  Google Scholar 

  • D.E. Osterbrock, Astrophysics of Gaseous Nebulae and Active Galactic Nuclei (1989)

    Book  Google Scholar 

  • D.R. Pasham, S.B. Cenko, A. Sadowski, J. Guillochon, N.C. Stone, S. van Velzen, J.K. Cannizzo, Optical/UV-to-X-ray echoes from the tidal disruption flare ASASSN-14li. Astrophys. J. Lett. 837, 30 (2017). https://doi.org/10.3847/2041-8213/aa6003

    Article  ADS  Google Scholar 

  • Z.-K. Peng, Y.-S. Yang, R.-F. Shen, L.-J. Wang, J.-H. Zou, B.-B. Zhang, CDF-S XT1 and XT2: white dwarf tidal disruption events by intermediate-mass black holes? Astrophys. J. Lett. 884(2), 34 (2019). https://doi.org/10.3847/2041-8213/ab481b

    Article  ADS  Google Scholar 

  • E.S. Phinney, Cosmic merger mania. Nature 340, 595–596 (1989). https://doi.org/10.1038/340595a0

    Article  ADS  Google Scholar 

  • T. Piran, A. Sa̧dowski, A. Tchekhovskoy, Jet and disc luminosities in tidal disruption events. Mon. Not. R. Astron. Soc. 453, 157–165 (2015a). https://doi.org/10.1093/mnras/stv1547

    Article  ADS  Google Scholar 

  • T. Piran, G. Svirski, J. Krolik, R.M. Cheng, H. Shiokawa, Disk formation versus disk accretion—what powers tidal disruption events? Astrophys. J. 806, 164 (2015b). https://doi.org/10.1088/0004-637X/806/2/164

    Article  ADS  Google Scholar 

  • G. Ponti, I. Papadakis, S. Bianchi, M. Guainazzi, G. Matt, P. Uttley, N.F. Bonilla, CAIXA: a catalogue of AGN in the XMM-Newton archive. III. Excess variance analysis. Astron. Astrophys. 542, 83 (2012). https://doi.org/10.1051/0004-6361/201118326

    Article  ADS  Google Scholar 

  • K.A. Pounds, J.N. Reeves, A.R. King, K.L. Page, P.T. O’Brien, M.J.L. Turner, A high-velocity ionized outflow and XUV photosphere in the narrow emission line quasar PG1211+143. Mon. Not. R. Astron. Soc. 345(3), 705–713 (2003). https://doi.org/10.1046/j.1365-8711.2003.07006.x

    Article  ADS  Google Scholar 

  • P. Predehl, H. Böhringer, H. Brunner, M. Brusa, V. Burwitz, N. Cappelluti, E. Churazov, K. Dennerl, M. Freyberg, P. Friedrich, eROSITA on SRG, in X-Ray Astronomy 2009; Present Status, Multi-Wavelength Approach and Future Perspectives, ed. by A. Comastri, L. Angelini, M. Cappi. American Institute of Physics Conference Series, vol. 1248 (2010), pp. 543–548. https://doi.org/10.1063/1.3475336

    Chapter  Google Scholar 

  • J.P. Pye, I.M. McHardy, The Ariel V sky survey of fast-transient X-ray sources. Mon. Not. R. Astron. Soc. 205, 875–888 (1983). https://doi.org/10.1093/mnras/205.3.875

    Article  ADS  Google Scholar 

  • E. Quataert, D. Kasen, Swift 1644+57: the longest gamma-ray burst? Mon. Not. R. Astron. Soc. 419, 1–5 (2012). https://doi.org/10.1111/j.1745-3933.2011.01151.x

    Article  ADS  Google Scholar 

  • M.J. Rees, Tidal disruption of stars by black holes of 10 to the 6th-10 to the 8th solar masses in nearby galaxies. Nature 333, 523–528 (1988). https://doi.org/10.1038/333523a0

    Article  ADS  Google Scholar 

  • M.J. Rees, Black holes in galactic centers. Sci. Am. 263, 56–60 (1990). https://doi.org/10.1038/scientificamerican1190-56

    Article  ADS  Google Scholar 

  • A.E. Reines, M. Volonteri, Relations between central black hole mass and total galaxy stellar mass in the local universe. Astrophys. J. 813, 82 (2015). https://doi.org/10.1088/0004-637X/813/2/82

    Article  ADS  Google Scholar 

  • S.R. Rosen, N.A. Webb, M.G. Watson, J. Ballet, D. Barret, V. Braito, F.J. Carrera, M.T. Ceballos, M. Coriat, R. Della Ceca, G. Denkinson, P. Esquej, S.A. Farrell, M. Freyberg, F. Grisé, P. Guillout, L. Heil, F. Koliopanos, D. Law-Green, G. Lamer, D. Lin, R. Martino, L. Michel, C. Motch, A. Nebot Gomez-Moran, C.G. Page, K. Page, M. Page, M.W. Pakull, J. Pye, A. Read, P. Rodriguez, M. Sakano, R. Saxton, A. Schwope, A.E. Scott, R. Sturm, I. Traulsen, V. Yershov, I. Zolotukhin, The XMM-Newton serendipitous survey. VII. The third XMM-Newton serendipitous source catalogue. Astron. Astrophys. 590, 1 (2016). https://doi.org/10.1051/0004-6361/201526416

    Article  Google Scholar 

  • N. Roth, D. Kasen, What sets the line profiles in tidal disruption events? Astrophys. J. 855(1), 54 (2018). https://doi.org/10.3847/1538-4357/aaaec6

    Article  ADS  Google Scholar 

  • D.M. Russell, J.C.A. Miller-Jones, T.J. Maccarone, Y.J. Yang, R.P. Fender, F. Lewis, Testing the jet quenching paradigm with an ultradeep observation of a steadily soft state black hole. Astrophys. J. Lett. 739, 19 (2011). https://doi.org/10.1088/2041-8205/739/1/L19

    Article  ADS  Google Scholar 

  • P. Salucci, C. Ratnam, P. Monaco, L. Danese, The masses of black holes in the nuclei of spirals. Mon. Not. R. Astron. Soc. 317(2), 488–496 (2000). https://doi.org/10.1046/j.1365-8711.2000.03622.x

    Article  ADS  Google Scholar 

  • W.L.W. Sargent, P.J. Young, A. Boksenberg, K. Shortridge, C.R. Lynds, F.D.A. Hartwick, Dynamical evidence for a central mass concentration in the galaxy M87. Astrophys. J. 221, 731–744 (1978). https://doi.org/10.1086/156077

    Article  ADS  Google Scholar 

  • R.D. Saxton, A.M. Read, P. Esquej, M.J. Freyberg, B. Altieri, D. Bermejo, The first XMM-Newton slew survey catalogue: XMMSL1. Astron. Astrophys. 480, 611–622 (2008). https://doi.org/10.1051/0004-6361:20079193

    Article  ADS  Google Scholar 

  • R.D. Saxton, A.M. Read, P. Esquej, S. Komossa, S. Dougherty, P. Rodriguez-Pascual, D. Barrado, A tidal disruption-like X-ray flare from the quiescent galaxy SDSS J120136.02+300305.5. Astron. Astrophys. 541, 106 (2012a). https://doi.org/10.1051/0004-6361/201118367

    Article  ADS  Google Scholar 

  • R.D. Saxton, A.M. Read, S. Komossa, P. Esquej, A well-monitored, X-ray selected, tidal disruption event, in European Physical Journal Web of Conferences. European Physical Journal Web of Conferences, vol. 39 (2012b), p. 02002. https://doi.org/10.1051/epjconf/20123902002

    Chapter  Google Scholar 

  • R.D. Saxton, S.E. Motta, S. Komossa, A.M. Read, Was the soft X-ray flare in NGC 3599 due to an AGN disc instability or a delayed tidal disruption event? Mon. Not. R. Astron. Soc. 454, 2798–2803 (2015). https://doi.org/10.1093/mnras/stv2160

    Article  ADS  Google Scholar 

  • R.D. Saxton, A.M. Read, S. Komossa, P. Lira, K.D. Alexander, M.H. Wieringa, XMMSL1 J074008.2-853927: a tidal disruption event with thermal and non-thermal components. Astron. Astrophys. 598, 29 (2017). https://doi.org/10.1051/0004-6361/201629015

    Article  ADS  Google Scholar 

  • R.D. Saxton, A.M. Read, S. Komossa, P. Lira, K.D. Alexander, I. Steele, F. Ocaña, E. Berger, P. Blanchard, XMMSL2 J144605.0+685735: a slow tidal disruption event. ArXiv e-prints, 1908-01065 (2019)

  • H. Schulz, C. Fritsch, Possible continuum-diluting processes to generate Liner-like spectra. Astron. Astrophys. 291, 713–719 (1994)

    ADS  Google Scholar 

  • S. Sembay, R.G. West, Black hole remnants: soft X-ray flares from tidally disrupted stars. Mon. Not. R. Astron. Soc. 262, 141–150 (1993). https://doi.org/10.1093/mnras/262.1.141

    Article  ADS  Google Scholar 

  • B.J. Shappee, J.L. Prieto, D. Grupe, C.S. Kochanek, K.Z. Stanek, G. De Rosa, S. Mathur, Y. Zu, B.M. Peterson, R.W. Pogge, S. Komossa, M. Im, J. Jencson, T.W.-S. Holoien, U. Basu, J.F. Beacom, D.M. Szczygieł, J. Brimacombe, S. Adams, A. Campillay, C. Choi, C. Contreras, M. Dietrich, M. Dubberley, M. Elphick, S. Foale, M. Giustini, C. Gonzalez, E. Hawkins, D.A. Howell, E.Y. Hsiao, M. Koss, K.M. Leighly, N. Morrell, D. Mudd, D. Mullins, J.M. Nugent, J. Parrent, M.M. Phillips, G. Pojmanski, W. Rosing, R. Ross, D. Sand, D.M. Terndrup, S. Valenti, Z. Walker, Y. Yoon, The man behind the curtain: X-rays drive the UV through NIR variability in the 2013 active galactic nucleus outburst in NGC 2617. Astrophys. J. 788, 48 (2014). https://doi.org/10.1088/0004-637X/788/1/48

    Article  ADS  Google Scholar 

  • R.-F. Shen, Fast, ultra-luminous X-ray bursts from tidal stripping of white dwarfs by intermediate-mass black holes. ArXiv e-prints (2018)

  • H. Shiokawa, J.H. Krolik, R.M. Cheng, T. Piran, S.C. Noble, General relativistic hydrodynamic simulation of accretion flow from a stellar tidal disruption. Astrophys. J. 804, 85 (2015). https://doi.org/10.1088/0004-637X/804/2/85

    Article  ADS  Google Scholar 

  • X.W. Shu, S.S. Wang, L.M. Dou, N. Jiang, J.X. Wang, T.G. Wang, A long decay of X-ray flux and spectral evolution in the supersoft active galactic nucleus GSN 069. Astrophys. J. Lett. 857, 16 (2018). https://doi.org/10.3847/2041-8213/aaba17

    Article  ADS  Google Scholar 

  • I.V. Strateva, S. Komossa, The X-ray point-source population of NGC 1365: the puzzle of two highly-variable ultraluminous X-ray sources. Astrophys. J. 692, 443 (2009). https://doi.org/10.1088/0004-637X/692/1/443

    Article  ADS  Google Scholar 

  • N.L. Strotjohann, R.D. Saxton, R.L.C. Starling, P. Esquej, A.M. Read, P.A. Evans, G. Miniutti, Highly variable AGN from the XMM-Newton slew survey. Astron. Astrophys. 592, 74 (2016). https://doi.org/10.1051/0004-6361/201628241

    Article  ADS  Google Scholar 

  • L.E. Strubbe, E. Quataert, Optical flares from the tidal disruption of stars by massive black holes. Mon. Not. R. Astron. Soc. 400, 2070 (2009). 2009MNRAS.400.2070S

    Article  ADS  Google Scholar 

  • L. Strüder, U. Briel, K. Dennerl, R. Hartmann, E. Kendziorra, N. Meidinger, E. Pfeffermann, C. Reppin, B. Aschenbach, W. Bornemann, H. Bräuninger, W. Burkert, M. Elender, M. Freyberg, F. Haberl, G. Hartner, F. Heuschmann, H. Hippmann, E. Kastelic, S. Kemmer, G. Kettenring, W. Kink, N. Krause, S. Müller, A. Oppitz, W. Pietsch, M. Popp, P. Predehl, A. Read, K.H. Stephan, D. Stötter, J. Trümper, P. Holl, J. Kemmer, H. Soltau, R. Stötter, U. Weber, U. Weichert, C. von Zanthier, D. Carathanassis, G. Lutz, R.H. Richter, P. Solc, H. Böttcher, M. Kuster, R. Staubert, A. Abbey, A. Holland, M. Turner, M. Balasini, G.F. Bignami, N. La Palombara, G. Villa, W. Buttler, F. Gianini, R. Lainé, D. Lumb, P. Dhez, The European photon imaging camera on XMM-Newton: the pn-CCD camera. Astron. Astrophys. 365, 18–26 (2001). https://doi.org/10.1051/0004-6361:20000066

    Article  ADS  Google Scholar 

  • H. Sun, B. Zhang, Z. Li, Extragalactic high-energy transients: event rate densities and luminosity functions. Astrophys. J. 812(1), 33 (2015). https://doi.org/10.1088/0004-637X/812/1/33

    Article  ADS  Google Scholar 

  • Y. Terashima, N. Kamizasa, H. Awaki, A. Kubota, Y. Ueda, A candidate active galactic nucleus with a pure soft thermal X-ray spectrum. Astrophys. J. 752, 154 (2012). https://doi.org/10.1088/0004-637X/752/2/154

    Article  ADS  Google Scholar 

  • L. Titarchuk, Generalized comptonization models and application to the recent high-energy observations. Astrophys. J. 434, 570 (1994). https://doi.org/10.1086/174760

    Article  ADS  Google Scholar 

  • J. Trümper, Highlights of ROSAT, in Frontiers of Space and Ground-Based Astronomy, ed. by W. Wamsteker, M.S. Longair, Y. Kondo. Astrophysics and Space Science Library, vol. 187 (1994), p. 47. https://doi.org/10.1007/978-94-011-0794-5_5

    Chapter  Google Scholar 

  • T.J. Turner, K.A. Pounds, The EXOSAT spectral survey of AGN. Mon. Not. R. Astron. Soc. 240, 833–880 (1989). https://doi.org/10.1093/mnras/240.4.833

    Article  ADS  Google Scholar 

  • A. Ulmer, Flares from the tidal disruption of stars by massive black holes. Astrophys. J. 514, 180–187 (1999). https://doi.org/10.1086/306909

    Article  ADS  Google Scholar 

  • S. van Velzen, G.R. Farrar, S. Gezari, N. Morrell, D. Zaritsky, L. Östman, M. Smith, J. Gelfand, A.J. Drake, Optical discovery of probable stellar tidal disruption flares. Astrophys. J. 741(2), 73 (2011a). https://doi.org/10.1088/0004-637X/741/2/73. 2011ApJ...741...73V

    Article  ADS  Google Scholar 

  • S. van Velzen, E. Körding, H. Falcke, Radio jets from stellar tidal disruptions. Mon. Not. R. Astron. Soc. 417(1), 51–55 (2011b). https://doi.org/10.1111/j.1745-3933.2011.01118.x

    Article  ADS  Google Scholar 

  • S. van Velzen, N.C. Stone, B.D. Metzger, S. Gezari, T.M. Brown, A.S. Fruchter, Late-time UV observations of tidal disruption flares reveal unobscured, compact accretion disks. Astrophys. J. 878(2), 82 (2019a). https://doi.org/10.3847/1538-4357/ab1844

    Article  ADS  Google Scholar 

  • S. van Velzen, S. Gezari, S.B. Cenko, E. Kara, J.C.A. Miller-Jones, T. Hung, J. Bright, N. Roth, N. Blagorodnova, D. Huppenkothen, L. Yan, E. Ofek, J. Sollerman, S. Frederick, C. Ward, M.J. Graham, R. Fender, M.M. Kasliwal, C. Canella, R. Stein, M. Giomi, V. Brinnel, J. van Santen, J. Nordin, E.C. Bellm, R. Dekany, C. Fremling, V.Z. Golkhou, T. Kupfer, S.R. Kulkarni, R.R. Laher, A. Mahabal, F.J. Masci, A.A. Miller, J.D. Neill, R. Riddle, M. Rigault, B. Rusholme, M.T. Soumagnac, Y. Tachibana, The first tidal disruption flare in ZTF: from photometric selection to multi-wavelength characterization. Astrophys. J. 872(2), 198 (2019b). https://doi.org/10.3847/1538-4357/aafe0c

    Article  ADS  Google Scholar 

  • S. Vaughan, R. Edelson, R.S. Warwick, Chandra observations of five X-ray transient galactic nuclei. Mon. Not. R. Astron. Soc. 349, 1–5 (2004). https://doi.org/10.1111/j.1365-2966.2004.07615.x

    Article  ADS  Google Scholar 

  • W. Voges, B. Aschenbach, T. Boller, H. Bräuninger, U. Briel, W. Burkert, K. Dennerl, J. Englhauser, R. Gruber, F. Haberl, The ROSAT all-sky survey bright source catalogue. Astron. Astrophys. 349, 389–405 (1999)

    ADS  Google Scholar 

  • J. Wang, D. Merritt, Revised rates of stellar disruption in galactic nuclei. Astrophys. J. 600, 149 (2004). 2004ApJ...600..149W

    Article  ADS  Google Scholar 

  • T.-G. Wang, H.-Y. Zhou, L.-F. Wang, H.-L. Lu, D. Xu, Transient superstrong coronal lines and broad bumps in the galaxy SDSS J074820.67+471214.3. Astrophys. J. 740(2), 85 (2011). https://doi.org/10.1088/0004-637X/740/2/85

    Article  ADS  Google Scholar 

  • J.-M. Wang, C. Cheng, Y.-R. Li, Clumpy accretion onto black holes. I. Clumpy-advection-dominated accretion flow structure and radiation. Astrophys. J. 748(2), 147 (2012). 2012ApJ...748..147W

    Article  ADS  Google Scholar 

  • M.C. Weisskopf, H.D. Tananbaum, L.P. Van Speybroeck, S.L. O’Dell, Chandra X-ray Observatory (CXO): overview, in X-Ray Optics, Instruments, and Missions III, ed. by J.E. Truemper, B. Aschenbach. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 4012 (2000), pp. 2–16. https://doi.org/10.1117/12.391545

    Chapter  Google Scholar 

  • T. Wevers, S. van Velzen, P.G. Jonker, N.C. Stone, T. Hung, F. Onori, S. Gezari, N. Blagorodnova, Black hole masses of tidal disruption event host galaxies. Mon. Not. R. Astron. Soc. 471, 1694–1708 (2017). https://doi.org/10.1093/mnras/stx1703

    Article  ADS  Google Scholar 

  • T. Wevers, D.R. Pasham, S. van Velzen, G. Leloudas, S. Schulze, J.C.A. Miller-Jones, P.G. Jonker, M. Gromadzki, E. Kankare, S.T. Hodgkin, Ł. Wyrzykowski, Z. Kostrzewa-Rutkowska, S. Moran, M. Berton, K. Maguire, F. Onori, S. Mattila, M. Nicholl, Evidence for rapid disc formation and reprocessing in the X-ray bright tidal disruption event candidate AT 2018fyk. Mon. Not. R. Astron. Soc. 488(4), 4816–4830 (2019a). https://doi.org/10.1093/mnras/stz1976

    Article  ADS  Google Scholar 

  • T. Wevers, N.C. Stone, S. van Velzen, P.G. Jonker, T. Hung, K. Auchettl, S. Gezari, F. Onori, D.M. Sánchez, Z. Kostrzewa-Rutkowska, Black hole masses of tidal disruption event host galaxies II. Mon. Not. R. Astron. Soc. 487, 4136 (2019b). https://doi.org/10.1093/mnras/stz1602

    Article  ADS  Google Scholar 

  • Y.Q. Xue, X.C. Zheng, Y. Li, W.N. Brandt, B. Zhang, B. Luo, B.-B. Zhang, F.E. Bauer, H. Sun, B.D. Lehmer, X.-F. Wu, G. Yang, X. Kong, J.Y. Li, M.Y. Sun, J.-X. Wang, F. Vito, A magnetar-powered X-ray transient as the aftermath of a binary neutron-star merger. Nature 568(7751), 198–201 (2019). https://doi.org/10.1038/s41586-019-1079-5

    Article  ADS  Google Scholar 

  • A. Yalinewich, J. Guillochon, R. Sari, A. Loeb, Shock breakouts from tidal disruption events. ArXiv e-prints (2018)

  • W. Yuan, C. Zhang, H. Feng, S.N. Zhang, Z.X. Ling, D. Zhao, J. Deng, Y. Qiu, J.P. Osborne, P. O’Brien, Einstein Probe – a small mission to monitor and explore the dynamic X-ray Universe. ArXiv e-prints, 1506-07735 (2015)

  • W. Yuan, S. Komossa, C. Zhang, H. Feng, Z.-X. Ling, D.H. Zhao, S.-N. Zhang, J.P. Osborne, P. O’Brien, R. Willingale, Detecting tidal disruption events of massive black holes in normal galaxies with the Einstein Probe, in Star Clusters and Black Holes in Galaxies Across Cosmic Time, ed. by Y. Meiron, S. Li, F.-K. Liu, R. Spurzem IAU Symposium, vol. 312 (2016), pp. 68–70. https://doi.org/10.1017/S1743921315007516

    Chapter  Google Scholar 

  • I. Zalamea, K. Menou, A.M. Beloborodov, White dwarfs stripped by massive black holes: sources of coincident gravitational and electromagnetic radiation. Mon. Not. R. Astron. Soc. 409, 25–29 (2010). https://doi.org/10.1111/j.1745-3933.2010.00930.x

    Article  ADS  Google Scholar 

  • B.A. Zauderer, E. Berger, R. Margutti, G.G. Pooley, R. Sari, A.M. Soderberg, A. Brunthaler, M.F. Bietenholz, Radio monitoring of the tidal disruption event Swift J164449.3+573451. II. The relativistic jet shuts off and a transition to forward shock X-ray/radio emission. Astrophys. J. 767(2), 152 (2013). https://doi.org/10.1088/0004-637X/767/2/152

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Dacheng Lin and Erin Kara are warmly thanked for providing updated figures of their work. RS would like to thank Peter Maksym for early help with the rates calculation. Sjoert Van Velzen and an anonymous second referee are thanked for comments and suggestions which improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Saxton.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The Tidal Disruption of Stars by Massive Black Holes

Edited by Peter G. Jonker, Sterl Phinney, Elena Maria Rossi, Sjoert van Velzen, Iair Arcavi and Maurizio Falanga

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saxton, R., Komossa, S., Auchettl, K. et al. X-Ray Properties of TDEs. Space Sci Rev 216, 85 (2020). https://doi.org/10.1007/s11214-020-00708-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11214-020-00708-4

Keywords

Navigation