Skip to main content
Log in

Coronal Photopolarimetry with the LASCO-C2 Coronagraph over 24 Years [1996 – 2019]

Application to the K/F Separation and to the Determination of the Electron Density

  • Editor’s Choice
  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

We present an in-depth characterization of the polarimetric channel of the Large-Angle Spectrometric COronagraph/LASCO-C2 onboard the Solar and Heliospheric Observatory (SOHO). The polarimetric analysis of the white-light images makes use of polarized sequences composed of three images obtained though three polarizers oriented at \(+60^{\circ }\), \(0^{\circ }\), and \(-60^{\circ }\), complemented by a neighboring unpolarized image, and relies on the formalism of Mueller. The Mueller matrix characterizing the C2 instrument was obtained through extensive ground-based calibrations of the optical components and global laboratory tests. Additional critical corrections were derived from in-flight tests relying prominently on roll sequences of SOHO, on the basis of consistency criteria (e.g. the “tangential” direction of polarization), and from several applications, notably the time-dependent tomographic reconstruction of the coronal electron density. This took several years of effort, but resulted in the quasi-uninterrupted photopolarimetric analysis of the corona over two complete Solar Cycles 23 and 24, and the comparison with a variety of eclipse data obtained at different phases of these cycles. Our final results encompass the characterization of the polarization of the white-light corona, of its polarized radiance, of the two-dimensional electron density, and of the K-corona. The agreement with the eclipse data is excellent except for slight discrepancies affecting the innermost part of the C2 field of view. The present work leaves the two unpolarized components, F-corona and stray light, entangled and their complex separation will be dealt with in a follow-on article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23
Figure 24
Figure 25
Figure 26
Figure 27
Figure 28
Figure 29
Figure 30
Figure 31
Figure 32
Figure 33
Figure 34
Figure 35
Figure 36
Figure 37
Figure 38
Figure 39
Figure 40
Figure 41
Figure 42
Figure 43
Figure 44
Figure 45
Figure 46
Figure 47
Figure 48
Figure 49
Figure 50

Similar content being viewed by others

References

  • Allen, C.W.: 1947, Interpretation of electron densities from corona brightness. Mon. Not. Roy. Astron. Soc.107, 426. DOI. ADS.

    Article  ADS  Google Scholar 

  • Arnquist, W.N., Menzel, D.H.: 1970, Coronal polarization and intensity at the November 12, 1966 solar eclipse. Solar Phys.11, 82. DOI.

    Article  ADS  Google Scholar 

  • Badalyan, O.G., Livshits, M.A., Sykora, J.: 1993, Polarization of the white-light corona and its large-scale structure in the period of solar cycle maximum. Solar Phys.145, 279. DOI. ADS.

    Article  ADS  Google Scholar 

  • Badalyan, O., Livshits, M., Sỳkora, J.: 1997, White-light polarization and large-scale coronal structures. Solar Phys.173, 67. DOI.

    Article  ADS  Google Scholar 

  • Barlyaeva, T., Lamy, P., Llebaria, A.: 2015, Mid-term quasi-periodicities and solar cycle variation of the white-light corona from 18.5 years (1996.0 – 2014.5) of LASCO observations. Solar Phys.290, 2117. DOI.

    Article  ADS  Google Scholar 

  • Baumbach, S.V.: 1937, Strahlung, ergiebigkeit und elektronendichte der sonnenkorona. Astron. Nachr.263, 121. DOI.

    Article  ADS  Google Scholar 

  • Baumbach, S.: 1938, Die Polarisation der Sonnenkorona. Astron. Nachr.267, 273. DOI. ADS.

    Article  ADS  MATH  Google Scholar 

  • Bazilevskaya, G., Broomhall, A.-M., Elsworth, Y., Nakariakov, V.: 2014, A combined analysis of the observational aspects of the quasi-biennial oscillation in solar magnetic activity. Space Sci. Rev.186, 359. DOI.

    Article  ADS  Google Scholar 

  • Brueckner, G., Howard, R., Koomen, M., Korendyke, C., Michels, D., Moses, J., Socker, D., Dere, K., Lamy, P., Llebaria, A., et al.: 1995, The Large Angle Spectroscopic Coronagraph (LASCO). In: The SOHO Mission, Springer, Dordrecht, 357. DOI.

    Chapter  Google Scholar 

  • Burkepile, J., Boll, A., Casini, R., de Toma, G., Elmore, D.F., Gibson, K.L., Judge, P.G., Mitchell, A.M., Penn, M., Sewell, S.D., Tomczyk, S., Yanamandra-Fisher, P.A.: 2017, Polarization Observations of the Total Solar Eclipse of August 21, 2017. AGU Fall Meeting Abstracts. ADS.

  • Capobianco, G., Fineschi, S., Massone, G., Balboni, E., Malvezzi, A.M., Crescenzio, G., Zangrilli, L., Calcidese, P., Antonucci, E., Patrini, M.: 2012, Electro-optical polarimeters for ground-based and space-based observations of the solar k-corona. In: Proc. of SPIE8450, 40. DOI.

    Chapter  Google Scholar 

  • Clette, F.: 1992, Eclipse totale de Soleil du 11 juillet 1991: les observations photographiques et CCD de la polarisation coronale. Ciel Terre108, 85. ADS.

    ADS  Google Scholar 

  • Clette, F., Cugnon, P., Koeckelenbergh, A.: 1985, Observations of the solar corona in polarized white light during the total solar eclipse of February 16, 1980: preliminary results. Solar Phys.98, 163. DOI.

    Article  ADS  Google Scholar 

  • Colaninno, R.C., Howard, R.A.: 2015, Update of the photometric calibration of the LASCO-C2 coronagraph using stars. Solar Phys.290, 997. DOI. ADS.

    Article  ADS  Google Scholar 

  • Dere, K.P., Wang, D., Howard, R.: 2005, Three-dimensional structure of coronal mass ejections from LASCO polarization measurements. Astrophys. J. Lett.620, L119. DOI. ADS.

    Article  ADS  Google Scholar 

  • Dürst, J.: 1976, Observations of corona polarization at the solar eclipse of 7 March 1970. Solar Phys.50, 457. DOI.

    Article  ADS  Google Scholar 

  • Dürst, J.: 1982, Two colour photometry and polarimetry of the solar corona of 16 February 1980. Astron. Astrophys.112, 241.

    ADS  Google Scholar 

  • Filippov, B.P., Molodenskij, M.M., Koutchmy, S.: 1994, On the optical polarization of the white-light coronal structures. In: Rusin, V., Heinzel, P., Vial, J.-C. (eds.) IAU Colloq. 144: Solar Coronal Structures, 601. ADS.

    Google Scholar 

  • Fisher, R., Guhathakurta, M.: 1995, Physical properties of polar coronal rays and holes as observed with the Spartan 201-01 coronagraph. Astrophys. J. Lett.447, L139. DOI.

    Article  ADS  Google Scholar 

  • Frazin, R.A., Vásquez, A.M., Thompson, W.T., Hewett, R.J., Lamy, P., Llebaria, A., Vourlidas, A., Burkepile, J.: 2012, Intercomparison of the LASCO-C2, SECCHI-COR1, SECCHI-COR2, and Mk4 coronagraphs. Solar Phys.280, 273. DOI.

    Article  ADS  Google Scholar 

  • Gabryl, J.-R., Cugnon, P., Clette, F.: 1999, Polarization observations and results of the 1998 February 26th solar corona. Contrib. Astron. Obs. Skaln. Pleso28, 216.

    ADS  Google Scholar 

  • Gardès, B., Lamy, P., Llebaria, A.: 2013, Photometric calibration of the LASCO-C2 coronagraph over 14 years (1996 – 2009). Solar Phys.283, 667. DOI.

    Article  ADS  Google Scholar 

  • Hayes, A., Vourlidas, A., Howard, R.: 2001, Deriving the electron density of the solar corona from the inversion of total brightness measurements. Astrophys. J.548, 1081. DOI.

    Article  ADS  Google Scholar 

  • Inhester, B.: 2015, Thomson scattering in the solar corona. arXiv.

  • Jacoub, S.A., Nevskii, M.Y., Leushin, V.V., Lebedeva, L.N.: 1976, Polarization of the solar corona on June 30, 1973. Soviet Astron.20, 82. ADS.

    ADS  Google Scholar 

  • Judge, P., Berkey, B., Boll, A., Bryans, P., Burkepile, J., Cheimets, P., DeLuca, E., de Toma, G., Gibson, K., Golub, L., Hannigan, J., Madsen, C., Marquez, V., Richards, A., Samra, J., Sewell, S., Tomczyk, S., Vera, A.: 2019, Solar eclipse observations from the ground and air from 0.31 to 5.5 microns. Solar Phys.294, 166. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kim, I.S., Lisin, D.V., Popov, V.V., Popova, E.V.: 2011, Eclipse high-precision linear polarimetry of the inner white-light corona: Polarization degree. In: Kuhn, J.R., Harrington, D.M., Lin, H., Berdyugina, S.V., Trujillo-Bueno, J., Keil, S.L., Rimmele, T. (eds.) Solar Polarization 6, Astron. Soc. Pacific Conf. Series437, 181. ADS.

    Google Scholar 

  • Kishonkov, A., Molodensky, M.: 1975, Precise determination of the orientation of the plane of polarization in the solar corona. Solar Phys.42, 341. DOI.

    Article  ADS  Google Scholar 

  • Koomen, M.J., Detwiler, C.R., Brueckner, G.E., Cooper, H.W., Tousey, R.: 1975, White light coronagraph in OSO-7. Appl. Opt.14, 743. DOI. ADS.

    Article  ADS  Google Scholar 

  • Koutchmy, S., Lamy, P.L.: 1985, The f-corona and the circum-solar dust evidences and properties [G. Nikolsky memorial lecture]. In: Properties and Interactions of Interplanetary Dust, Springer, Dordrecht, 63. DOI.

    Chapter  Google Scholar 

  • Koutchmy, S., Picat, J., Dantel, M.: 1977, A polarimetric study of the solar corona observed during the total eclipse of June 30, 1973 by means of a radial neutral filter. Astron. Astrophys.59, 349.

    ADS  Google Scholar 

  • Koutchmy, S., Schatten, K.H.: 1971, Observations and discussions concerning ‘high’ polarization features in the solar corona. Solar Phys.17, 117. DOI.

    Article  ADS  Google Scholar 

  • Koutchmy, S., Molodenskii, M., Nikol’skii, G., Filippov, B.: 1993, Measuring the polarization of the solar corona. Astron. Rep.37, 286. ADS.

    ADS  Google Scholar 

  • Koutchmy, S., Molodenskii, M., Starkova, L.I., Kutvitskii, V., Ershov, A.: 1996, The polarization and 3-d structure of the corona on 11.3.94. Radiophys. Quantum Electron.39, 921. DOI. ADS.

    Article  ADS  Google Scholar 

  • Krivova, N., Solanki, S.: 2002, The 1.3-year and 156-day periodicities in sunspot data: wavelet analysis suggests a common origin. Astron. Astrophys.394, 701. DOI.

    Article  ADS  Google Scholar 

  • Lamy, P., Llebaria, A., Quémerais, E.: 2002, Solar cycle variation of the radiance and the global electron density of the solar corona. Adv. Space Res.29, 373. DOI.

    Article  ADS  Google Scholar 

  • Lamy, P.L., Perrin, J.-M.: 1986, Volume scattering function and space distribution of the interplanetary dust cloud. Astron. Astrophys.163, 269. ADS.

    ADS  Google Scholar 

  • Lamy, P., Quemerais, E., Llebaria, A., Bout, M., Howard, R., Schwenn, R., Simnett, G.: 1997, Electron densities in coronal holes from LASCO-C2 images. In: Fifth SOHO Workshop: The Corona and Solar Wind Near Minimum Activity404, 491. ADS.

    Google Scholar 

  • Lamy, P., Barlyaeva, T., Llebaria, A., Floyd, O.: 2014, Comparing the solar minima of cycles 22/23 and 23/24: the view from LASCO white light coronal images. J. Geophys. Res.119, 47. DOI. ADS.

    Article  Google Scholar 

  • Lamy, P., Boclet, B., Wojak, J., Vibert, D.: 2017, Anomalous surge of the white-light corona at the onset of the declining phase of Solar Cycle 24. Solar Phys.292, 60. DOI. ADS.

    Article  ADS  Google Scholar 

  • Lazarides, E.: 1992, Etude d’un instrument coronographique d’un point de vue diffraction, photométrie et polarisation. Application des logiciels à d’autres instruments spatiaux. PhD thesis, Université Aix-Marseille 3.

  • Leinert, C., Grun, E.: 1990, In: Schwenn, R., Marsch, E. (eds.) Interplanetary Dust, 207. ADS.

    Google Scholar 

  • Leinert, C., Richter, I., Pitz, E., Planck, B.: 1981, The zodiacal light from 1.0 to 0.3 A.U. as observed by the Helios space probes. Astron. Astrophys.103, 177. ADS.

    ADS  Google Scholar 

  • Leinert, C., Richter, I., Pitz, E., Hanner, M.: 1982, HELIOS zodiacal light measurements – a tabulated summary. Astron. Astrophys.110, 355. ADS.

    ADS  Google Scholar 

  • Lites, B., Card, G., Elmore, D., Holzer, T., Lecinski, A., Streander, K., Tomczyk, S., Gurman, J.: 2000, Dynamics of polar plumes observed at the 1998 February 26 eclipse. In: Physics of the Solar Corona and Transition Region, Springer, Dordrecht, 185.

    Chapter  Google Scholar 

  • Llebaria, A., Lamy, P., Bout, M.: 2004, Lessons learnt from the SOHO LASCO-C2 calibration. In: Proc. of SPIE5171, 27. DOI.

    Chapter  Google Scholar 

  • Llebaria, A., Lamy, P., Danjard, J.-F.: 2006, Photometric calibration of the LASCO-C2 coronagraph for solar system objects. Icarus182, 281. DOI.

    Article  ADS  Google Scholar 

  • Llebaria, A., Lamy, P., Koutchmy, S.: 1999, The global activity of the solar corona. In: 8th SOHO Workshop: Plasma Dynamics and Diagnostics in the Solar Transition Region and Corona446, 441. ADS.

    Google Scholar 

  • Llebaria, A., Thernisien, A.: 2001, Highly accurate photometric equalization of long sequences of coronal images. In: International Symposium on Optical Science and Technology, 265. International Society for Optics and Photonics. DOI.

    Chapter  Google Scholar 

  • Lyot, B.: 1932, Étude de la couronne solaire en dehors des éclipses. Z. Astrophys.5, 73. ADS.

    ADS  Google Scholar 

  • MacQueen, R.M., Csoeke-Poeckh, A., Hildner, E., House, L., Reynolds, R., Stanger, A., Tepoel, H., Wagner, W.: 1980, The high altitude observatory coronagraph/polarimeter on the solar maximum mission. Solar Phys.65, 91. DOI.

    Article  ADS  Google Scholar 

  • Michard, R., Sotirovski, P.: 1965, Contributions à l’étude de la couronne lors de l’éclipse du 15 février 1961. II. Photométrie et polarimètre de la couronne. Ann. d’Astrophys.28, 96.

    Google Scholar 

  • Molodensky, M.M.: 1973, On an anomalous polarization of the corona. Solar Phys.28, 465. DOI. ADS.

    Article  ADS  Google Scholar 

  • Moran, T.G., Davila, J.M.: 2004, Three-dimensional polarimetric imaging of coronal mass ejections. Science305, 66. DOI.

    Article  ADS  Google Scholar 

  • Moran, T.G., Davila, J.M., Morrill, J.S., Wang, D., Howard, R.: 2006, Solar and heliospheric observatory/large angle spectrometric coronagraph polarimetric calibration. Solar Phys.237, 211. DOI.

    Article  ADS  Google Scholar 

  • Morrill, J., Korendyke, C., Brueckner, G., Giovane, F., Howard, R., Koomen, M., Moses, D., Plunkett, S., Vourlidas, A., Esfandiari, E., et al.: 2006, Calibration of the SOHO/LASCO C3 white light coronagraph. Solar Phys.233, 331. DOI.

    Article  ADS  Google Scholar 

  • Mueller, H.: 1943, Memorandum on the polarization optics of the photo elastic shutter OSRD project OEMsr-576 report no. 2, November 15.

  • Munro, R.H., Jackson, B.V.: 1977, Physical properties of a polar coronal hole from 2 to 5 solar radii. Astrophys. J.213, 874. DOI. ADS.

    Article  ADS  Google Scholar 

  • Ney, E.P., Huch, W.F., Maas, R.W., Thorness, R.B.: 1960, Eclipse polarimeter. Astrophys. J.132, 812. DOI. ADS.

    Article  ADS  Google Scholar 

  • Ney, E.P., Huch, W.F., Kellogg, P.J., Stein, W., Gillett, F.: 1961, Polarization and intensity studies of the eclipse of October 2, 1959. Astrophys. J.133, 616. DOI. ADS.

    Article  ADS  Google Scholar 

  • Nikolsky, G., Sazanov, A., Kishonkov, A.: 1977, The polarization of the inner solar corona at the eclipse of 10 July 1972. Solar Phys.53, 79. DOI.

    Article  ADS  Google Scholar 

  • Pagot, E., Lamy, P., Llebaria, A., Boclet, B.: 2014, Automated processing of LASCO coronal images: spurious point-source-filtering and missing-blocks correction. Solar Phys.289, 1433. DOI.

    Article  ADS  Google Scholar 

  • Pepin, T.: 1970, Observations of the brightness and polarization of the outer corona during the 1966 November 12 total eclipse of the Sun. Astrophys. J.159, 1067.

    Article  ADS  Google Scholar 

  • Quémerais, E., Lamy, P.: 2002, Two-dimensional electron density in the solar corona from inversion of white light images-application to SOHO/LASCO-C2 observations. Astron. Astrophys.393, 295. DOI.

    Article  ADS  Google Scholar 

  • Raju, A.K., Abhyankar, K.D.: 1986, Polarization and electron densities in the solar corona of 1980 February 16. Bull. Astron. Soc. India14, 217. ADS.

    ADS  Google Scholar 

  • Rieger, E., Share, G., Forrest, D., Kanbach, G., Reppin, C., Chupp, E.: 1984, A 154-day periodicity in the occurrence of hard solar flares? Nature312, 623. DOI.

    Article  ADS  Google Scholar 

  • Saito, K., Hata, S.: 1964, Polarigraphic observations of the solar corona at the total eclipse on February 5 1962 at Lae, New Guinea. Publ. Astron. Soc. Japan16, 240. ADS.

    ADS  Google Scholar 

  • Saito, K., Poland, A.I., Munro, R.H.: 1977, A study of the background corona near solar minimum. Solar Phys.55, 121. DOI.

    Article  ADS  Google Scholar 

  • Saito, K., Hirose, H., Kaho, S., Tomita, K., Sato, Y.: 1950, Brightness and polarization of the solar corona. Ann. Tokyo Astron. Obs.3. ADS.

  • Seagraves, P.H., Elmore, D.F.: 1994, Use of Mueller and Non-Mueller Matrices to Describe Polarization Properties of Telescope-Based Polarimeters, In: Goldstein, D.H., Chenault, D.B. (eds.) Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series2265, 231. DOI. ADS.

    Chapter  Google Scholar 

  • Sivaraman, K.R., Jayachandran, M., Scaria, K.K., Babu, G.S.D., Bagare, S.P., Jayarajan, A.P.: 1984, Brightness, polarization and electron density of the solar corona of 1980 February 16. J. Astrophys. Astron.5, 149. DOI. ADS.

    Article  ADS  Google Scholar 

  • Skomorovsky, V.I., Trifonov, V.D., Mashnich, G.P., Zagaynova, Y.S., Fainshtein, V.G., Kushtal, G.I., Chuprakov, S.A.: 2012, White-light observations and polarimetric analysis of the solar corona during the eclipse of 1 August 2008. Solar Phys.277, 267. DOI. ADS.

    Article  ADS  Google Scholar 

  • Tanabe, T., Tsumuraya, F., Baba, N., Alvarez, M., Noguchi, M., Isobe, S.: 1992, Optical polarization observations of the solar corona during the total solar eclipse of 1991 July 11. Publ. Astron. Soc. Japan44, L221.

    ADS  Google Scholar 

  • Van de Hulst, H.C.: 1950, The electron density of the solar corona. Bull. Astron. Inst. Neth.11, 135.

    ADS  Google Scholar 

  • Vibert, D., Peillon, C., Lamy, P., Frazin, R.A., Wojak, J.: 2016, Time-dependent tomographic reconstruction of the solar corona. Astron. Comput.17, 144. DOI.

    Article  ADS  Google Scholar 

  • Von Klüber, H.: 1958, Intensities, polarization and electron density of the solar corona from photographs taken at the total solar eclipse of 1952 February 25. Mon. Not. Roy. Astron. Soc.118, 201.

    Article  ADS  Google Scholar 

  • Vorobiev, D., Ninkov, Z., Bernard, L., Brock, N.: 2017, Imaging polarimetry of the 2017 solar eclipse with the RIT polarization imaging camera. arXiv.

  • Wang, Y.-M., Sheeley, N.R. Jr.: 2003, On the fluctuating component of the Sun’s large-scale magnetic field. Astrophys. J.590, 1111.

    Article  ADS  Google Scholar 

  • Zangrilli, L., Fineschi, S., Massone, G., Capobianco, G., Porcu, F., Calcidese, P.: 2006, Ekpol: liquid crystal polarimeter for eclipse observation of the k-corona. In: International Symposium on Solar Physics and Solar Eclipses (SPSE) 2006, 39. data.irsol.ch/spse/book/spse_book.pdf.

    Google Scholar 

Download references

Acknowledgements

We thank our former colleagues at the Laboratoire d’Astrophysique de Marseille, M. Bout, F. Ernandez, G. Faury, B. Gardès, and C. Peillon for their contributions to the early phases of this study. We are grateful to D. Elmore, S. Koutchmy, S. Fineschi, G. Capobianco, E. Balboni, and D. Vorobiev for providing the results of their eclipse observations, to P. Raynal and J.-L. Reynaud for digitizing the photographic images of the eclipse of 11 August 1999, to J. Wojak for generating Figures 30 and 31, and to Y.-M. Wang for providing the Total Magnetic Field (TMF) data. We are indebted to S. Koutchmy for constructing the remarkable composites of the four eclipses. The LASCO-C2 project at the Laboratoire d’Astrophysique de Marseille and the Laboratoire Atmosphères, Milieux et Observations Spatiales is funded by the Centre National d’Etudes Spatiales (CNES). LASCO was built by a consortium of the Naval Research Laboratory, USA, the Laboratoire d’Astrophysique de Marseille (formerly Laboratoire d’Astronomie Spatiale), France, the Max-Planck-Institut für Sonnensystemforschung (formerly Max Planck Institute für Aeronomie), Germany, and the School of Physics and Astronomy, University of Birmingham, UK. SOHO is a project of international cooperation between ESA and NASA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Lamy.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Determination of the Correction Function \(S(x,y)\)

Appendix: Determination of the Correction Function \(S(x,y)\)

The correction function \(S(x,y)\) was derived from the polarization sequences performed on 2 and 3 September 1997 when the SOHO spacecraft, starting from its nominal position \(\theta _{\mathrm{r}}=0^{\circ }\), was successively rolled to \(\theta _{\mathrm{r}}=45^{\circ }\) and \(90^{\circ }\) (Table 3). Each sequence yielded a triplet of polarized images \(I_{1}\), \(I_{2}\), \(I_{3}\) leading to a polarized radiance \(\mathrm{p}_{\mathrm{c}}I_{\mathrm{c}} = p_{\mathrm{cp}}I_{\mathrm{cp}}\) according to our notations introduced in Section 3. For simplification in the present discussion, we adopt the standard notation \(pB\). The three sequences therefore produced three \(\mathrm{pB}\) images denoted as follows:

  1. (i)

    \(\theta _{\mathrm{r}}=0^{\circ }\rightarrow {\mathrm{pB}}_{\mathrm{0}} \),

  2. (ii)

    \(\theta _{\mathrm{r}}=45^{\circ }\rightarrow {\mathrm{pB}}_{\mathrm{45}} \),

  3. (iii)

    \(\theta _{\mathrm{r}}=90^{\circ }\rightarrow {\mathrm{pB}}_{\mathrm{90}} \).

Comparing those images requires a rotation by \(-\theta _{\mathrm{r}}\) and this operation will be denoted by \([\Im ]_{-\theta _{\mathrm{r}}}\) where \([\Im ]\) is any image. \(S(x,y)\) is determined by imposing the requirement that the three \(\mathrm{pB}\) images, once corrected by \(S(x,y)\) and properly rotated, are identical. This procedure requires that the corona remained unchanged during the 20 hours of the roll sequence. This is certainly true for the F-corona as well as for the large-scale K-corona with no coronal mass ejection detected during this period of low solar activity. However, small scale variations may present a difficulty, but will be ignored by considering that \(S(x,y)\) is intended to correct for large-scale variations only. The very validity of our procedure, i.e. the existence of an ad hoc function \(S(x,y)\) can only be established by finding a relevant solution as demonstrated in Section 7.

Let us form the following ratios of the polarized radiances:

$$\begin{aligned} R_{0/45} =& {\mathrm{pB}}_{0}/[{\mathrm{pB}}_{45}]_{-45} , \end{aligned}$$
(34)
$$\begin{aligned} R_{45/90} =& {\mathrm{pB}}_{45}/[{\mathrm{pB}}_{90}]_{-45} . \end{aligned}$$
(35)

The condition that the corrected polarized radiances be identical translates into the two following constraints for \(S(x,y)\):

$$\begin{aligned} R_{0/45} =& \frac{S}{[S]_{-45}}(1+\epsilon _{1}) , \end{aligned}$$
(36)
$$\begin{aligned} R_{45/90} =& \frac{S}{[S]_{-45}}(1+\epsilon _{2}) , \end{aligned}$$
(37)

where \(\epsilon _{1}\) and \(\epsilon _{2}\) account for some uncertainty as the radiances cannot obviously be identical because of small changes in the corona during the time interval elapsed between successive observations and because of the intrinsic noise in the images. In order to combine the above two equations in a single constraint, we introduce a mask \(M=M(x,y) \in [0,1]\) intended to mitigate the effect of the variations of the inner streamer belt. We then obtain

$$ R = \frac{M\cdot R_{0/45}+[M]_{45}\cdot R_{45/90}}{M+[M]_{45}} .$$
(38)

\(S(x,y)\) is now determined by imposing the requirement that it is positive, smooth, and that it satisfies the relationship

$$ S = R[S]_{-45} .$$
(39)

To solve the above equation, we switch from Cartesian \((x,y)\) to polar \((r,\phi )\) coordinates and we change the intensity scale from linear to logarithmic (homomorphic transform). We then obtain

$$\begin{aligned} \log S(r,\phi ) = & \log R(r,\phi ) + \log S(r,\phi -\frac{\pi }{4}). \end{aligned}$$
(40)

As all these functions are periodic in \(\phi \), we proceed by looking for a periodic function \(\psi (r,\phi ) = \log S(r,\phi )\) satisfying

$$\begin{aligned} \psi (r,\phi )-\psi (r,\phi -\frac{\pi }{4}) = & \log R(r,\phi ) . \end{aligned}$$
(41)

In Fourier space, this equation becomes

$$\begin{aligned} \Psi ^{*}(r,\omega )(1-\mathrm{e}^{-\mathrm{i}\pi \omega /4}) = & \widehat{\log R}^{*}(r,\omega ) \end{aligned}$$
(42)

where the wide hat means that the Fourier transformation is applied to \(\log R\) and not to \(R\). \(\psi (r,\phi )\) and \(R(r,\phi )\) being periodic, both sides may be expressed as Fourier series:

$$\begin{aligned} \Psi _{k}(r)(1-\mathrm{e}^{-\mathrm{i}\pi k/4}) = & \widehat{\log R}_{k}(r) \qquad \forall ~ k ~\mbox{in} ~[0,\ldots,N-1], \end{aligned}$$
(43)

where \(N\) is the number of angular samples. This differential problem is only partially solvable: indeed, we note that the average value remains undefined, as well as the harmonic terms corresponding to \(k \in \{0,8,16,\dots ,8n\}\). In practice, and because of the noise, the determination can well be limited to the first five harmonic terms:

$$\begin{aligned} \Psi _{n}(r) = & \frac{\widehat{\log R}_{k}(r)}{1-\mathrm{e}^{-\mathrm{i}k\pi /4}} \qquad k = \{1,2,3,4,5\}. \end{aligned}$$

The radial variations of the \(\Psi _{k}(r)\) coefficients are strongly correlated (thus offering some extra robustness) and a third order polynomial of \(r\) is ample.

In practice the missing values in the \((r,\phi )\) frame due to the square format of the initial images poses an additional problem alleviated by limiting the expansion series to the first terms in the outer part of image where data are missing.

The polar form of the function \(\log S = \psi (r,\phi )\) is obtained with the truncated Fourier series:

$$\begin{aligned} \psi (r,\phi ) \approx & \sum _{1}^{5} \Psi _{k}(r)\;\mathrm{e}^{- \mathrm{i}2\pi k\phi }. \end{aligned}$$

From \(\psi (r,\phi )\) the derivation of \(S(x,y)\) is straightforward (Figure 51). We note that the very construction of the function \(\psi (r,\phi )\) ensures its smoothness and henceforth that of \(S(x,y)\).

Figure 51
figure 51

The LASCO-C2 correction pattern \(S(x,y)\) for the polarized brightness image (left panel) and its histogram (right panel).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lamy, P., Llebaria, A., Boclet, B. et al. Coronal Photopolarimetry with the LASCO-C2 Coronagraph over 24 Years [1996 – 2019]. Sol Phys 295, 89 (2020). https://doi.org/10.1007/s11207-020-01650-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-020-01650-y

Keywords

Navigation