Skip to main content

Advertisement

Log in

The Availability of Critical Minerals for China’s Renewable Energy Development: An Analysis of Physical Supply

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

In the context of depletion of fossil energy and environmental impacts of its use, society has begun to develop vigorously renewable energy (RE). As a result, concerns about the availability of critical minerals used in RE systems have been raised. This paper uses a generalized Weng model to analyze the long-term production of critical minerals for China’s RE development. In our pessimistic case, the results show that the production of most of the minerals investigated for China will peak before 2030, with a relatively high decline rate thereafter. This is an unsustainable situation for China’s RE development unless large and growing quantities of these minerals can be imported. In our optimistic case, although this delays the peak date only slightly, it significantly increases the maximum production rate and lowers the subsequent decline rate. The impacts of many other factors on production, and the implications of China’s domestic minerals production on world’s minerals supply chain, are also analyzed. We conclude that both China and the world should pay close attention to the potential supply risks to critical minerals. Possible measures in response are suggested for both China and the world.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1

Data sources: BP (2011–2019)

Figure 2
Figure 3
Figure 4
Figure 5

Data source: MNRC (2019)

Similar content being viewed by others

References

  • Achzet, B., & Helbig, C. (2013). How to evaluate raw material supply risks—An overview. Resources Policy,38(4), 435–447.

    Google Scholar 

  • Banegas, H. (2011). Analysis of the potential, market and technologies of geothermal resources in Honduras. United Nations University Reports. Retieved December 26, 2018 from https://orkustofnun.is/gogn/unu-gtp-report/UNU-GTP-2011-12.pdf.

  • Bentley, R. W. (2002). Global oil and gas depletion: an overview. Energy Policy,30(3), 189–205.

    Google Scholar 

  • Brandt, A. R. (2007). Testing Hubbert. Energy Policy,35(5), 3074–3088.

    Google Scholar 

  • British Petroleum (BP). (2011–2019). BP Statistical Review of World Energy 20112019. Retieved August 13, 2019 from http://www.bp.com/statisticalreview.

  • Calvo, G., Valero, A., & Valero, A. (2017). Assessing maximum production peak and resource availability of non-fuel mineral resources: Analyzing the influence of extractable global resources. Resources, Conservation and Recycling,125, 208–217.

    Google Scholar 

  • Candeias, C., Ávila, P. F., Da Silva, E. F., & Teixeira, J. P. (2015). Integrated approach to assess the environmental impact of mining activities: Estimation of the spatial distribution of soil contamination (Panasqueira mining area, Central Portugal). Environmental Monitoring and Assessment,187(3), 135.

    Google Scholar 

  • Carbaugh, R. J., & Brown, M. (2012). Industrial policy and renewable energy: Trade conflicts. Journal of International and Global Economic Studies,5, 1–16.

    Google Scholar 

  • Cavallo, A. J. (2004). Hubbert’s petroleum production model: an evaluation and implications for World Oil Production Forecasts. Natural Resources Research,13(4), 211–221.

    Google Scholar 

  • Chen, J., & Cheng, J. H. (2015). Environmental impact of mineral resources development and utilization in China. China Population, Resources and Environment,25(3), 111–119.

    Google Scholar 

  • China’s National Renewable Energy Center (CNREC). (2018). China’s renewable energy outlook 2018. http://www.cnrec.org.cn/cbw/zh/2018-10-22-541.html.

  • Collins, P. C., Croot, P. L., Carlsson, J., Colaço, A., Grehan, A., Hyeong, K., et al. (2013). A primer for the Environmental Impact Assessment of mining at seafloor massive sulfide deposits. Marine Policy,42, 198–209.

    Google Scholar 

  • Cui, M. H. (2017). Industrialization of urban mineral development and use. Resources and Industries,19(6), 64–70.

    Google Scholar 

  • Diederen, A. M. (2009). Metal minerals scarcity: A call for managed austerity and the elements of hope. The Oildrum,1, 1–15.

    Google Scholar 

  • Dou, H. L., Wang, B., Zhang, J. Y., & Jia, G. X. (2016). Research progress of solar photovoltaic power generation materials. Modern Manufacturing Technology and Equipment,12, 46–48.

    Google Scholar 

  • Elshkaki, A., Graedel, T. E., & Yan, J. (2014). Dysprosium, the balance problem, and wind power technology. Applied Energy,136, 548–559.

    Google Scholar 

  • Enshe, D. U., & Zhou, H. S. (2008). Environmental impact and economic gain-loss assessment for mineral resources exploitation of a mine area in Xinmi County. Resources Science,30(3), 440–445.

    Google Scholar 

  • Erdmann, L., & Graedel, T. E. (2011). Criticality of non-fuel minerals: A review of major approaches and analyses. Environmental Science and Technology,45(18), 7620–7630.

    Google Scholar 

  • European Union (EU). (2017). Communication from the Commission to the European parliament, the Council, the European economic and social committee and the Committee of the regions on the 2017 list of Critical Raw Materials for the EU. COM/2017/0490 final. Retrieved January 10, 2019 from https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52017DC0490.

  • Evatt, G. W., Soltan, M. O., & Johnson, P. V. (2012). Mineral reserves underprice uncertainty. Resources Policy,37(3), 340–345.

    Google Scholar 

  • Fan, Z. L. (2018). Technological progress, efficiency and depletion of mineral resources. China Population, Resources and Environment,28(215), 195–198.

    Google Scholar 

  • Fang, J., Lau, C. K. M., Lu, Z., & Wu, W. (2018). Estimating peak uranium production in China-Based on a Stella model. Energy Policy,120, 250–258.

    Google Scholar 

  • Feng, L., Wang, J. L., & Zhao, L. (2010). Construction and application of a multi-cycle model in the prediction of natural gas production. Natural Gas Industry,30(7), 114–116.

    Google Scholar 

  • Fischer-Kowalski, M., Swilling, M., von Weizsäcker, E. U., Ren, Y., Morigichi, Y., Crane, W., et al. (2011). Decoupling natural resources use and environmental impacts from economic growth. United Nations Environment Programme. A report of the working group on decoupling to the international resource panel.

  • Gantner, O. (2015). Ressourcenstrategische Betrachtung der Kritikalität von Phosphor. Ph.D. thesis, University of Augsburg.

  • Graedel, T. E., & Nuss, P. (2014). Employing considerations of criticality in product design. JOM Journal of the Minerals Metals and Materials Society,66(11), 2360–2366.

    Google Scholar 

  • Graedel, T. E., & Reck, B. K. (2016). Six years of criticality assessments: what have we learned so far? Journal of Industrial Ecology,20(4), 692–699.

    Google Scholar 

  • Gulley, A. L., Nassar, N. T., & Xun, S. (2018). China, the United States, and competition for resources that enable emerging technologies. Proceedings of the National Academy of Sciences,115(16), 4111–4115.

    Google Scholar 

  • Hall, J., & Nicholls, S. (2007). Valuation of mining projects using option pricing techniques. JASSA,4, 22–29.

    Google Scholar 

  • Helbig, C., Wietschel, L., Thorenz, A., & Tuma, A. (2016). How to evaluate raw material vulnerability—an overview. Resources Policy,48, 13–24.

    Google Scholar 

  • Höök, M., Zittel, W., Schindler, J., & Aleklett, K. (2010). Global coal production outlooks based on a logistic model. Fuel,89(11), 3546–3558.

    Google Scholar 

  • Hu, Y., Hall, C. A. S., Wang, J., Feng, L., & Poisson, A. (2013). Energy Return on Investment (EROI) of China’s conventional fossil fuels: Historical and future trends. Energy,54, 352–364.

    Google Scholar 

  • Huang, X. A., Sillanpaa, M., Gjessing, E. T., Peraniemi, S., & Vogt, R. D. (2010). Environmental impact of mining activities on the surface water quality in Tibet: Gyama valley. Science of the Total Environment,408(19), 4177–4184.

    Google Scholar 

  • Hubbert, M. K. (1949). Energy from Fossil Fuels. Science,109(2823), 103–109.

    Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC). (2014). Climate change 2014: Synthesis report. In Core Writing Team, R.K. Pachauri and L.A. Meyer (Eds.), Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. IPCC, Geneva, Switzerland.

  • International Renewable Energy Agency (IRENA). (2018). Renewable capacity statistics 2018. Abu Dhabi. Retrieved March 15, 2019 from https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2018/Mar/IRENA_RE_Capacity_Statistics_2018.pdf.

  • International Energy Agency (IEA). 2008. World Energy Outlook 2008. November 2008.

  • International Energy Agency (IEA). 2019. World Energy Investment 2019. November 2019.

  • Ji, Y. S., & Wang, S. F. (2012). Constructing China’s technological innovation strategy for mineral resources. Industrial Technology and Economy,31(3), 3–8.

    Google Scholar 

  • Kaufmann, R. K., & Cleveland, C. J. (1991). Policies to increase US oil production: Likely to fail, damage the economy, and damage the environment. Annual Review of Energy and the Environment,16(1), 379–400.

    Google Scholar 

  • Li, X. N., Huang, Z., & Li, Y. (2016). Analysis of global supply and demand pattern of germanium resources. China Mining Magazine,25, 13–17.

    Google Scholar 

  • Li, T. F., Xia, Q. L., Wang, X. Q., Liu, Y., Chang, L. H., & Leng, S. (2018a). Metallogenic geological characteristics and mineral resource potential of rare earth element resources in China. Earth Science Frontiers,25(3), 95–106.

    Google Scholar 

  • Li, M. Y., & Zhang, G. S. (2014). International comparison and forecast of China biofuel production: Based on Hubbert model. Advanced Materials Research,953, 240–245.

    Google Scholar 

  • Li, H., Zhao, X., Wu, T., & Qi, Y. (2018b). The consistency of China’s energy statistics and its implications for climate policy. Journal of Cleaner Production,199, 27–35.

    Google Scholar 

  • Luo, T., Ault, G., & Galloway, S. (2010). Demand Side Management in a highly decentralized energy future. In 45th international universities power engineering conference UPEC 2010.

  • Mancheri, N. A. (2015). World trade in rare earths, Chinese export restrictions, and implications. Resources Policy,46, 262–271.

    Google Scholar 

  • Marvasti, A. (2013). The role of price expectations and legal uncertainties in ocean mineral, exploration activities. Resources Policy,38(1), 68–74.

    Google Scholar 

  • McCollum, D. L., Zhou, W., Bertram, C., De Boer, H. S., Bosetti, V., Busch, S., et al. (2018). Energy investment needs for fulfilling the Paris Agreement and achieving the Sustainable Development Goals. Nature Energy,3(7), 589.

    Google Scholar 

  • Ministry of Natural Resources of China (MNRC). (2018). China mineral resources 2019. Beijing: Geological Publishing House.

    Google Scholar 

  • Ministry of Natural Resources of China (MNRC). (2019). China mineral resources 2019. Beijing: Geological Publishing House.

    Google Scholar 

  • Moss, R. L., Tzimas, E., Kara, H., Willism P., & Kooroshy, J. (2011). Critical metals in strategic energy technologies. JRC-scientific and strategic reports, European Commission Joint Research Centre Institute for Energy and Transport, http://www.energie-nachrichten.info/file/News/11116_ER_Bericht_JRC%20critical%20metals_e.pdf.

  • Nakicenovic, N. (1997). Decarbonization as a long-term energy strategy. In Y. Kaya & K. Yokobori (Eds.), Environment, energy and economy. Tokyo: United Nations University Press.

    Google Scholar 

  • Nashawi, I. S., Malallah, A., & Al-Bisharah, M. (2010). Forecasting world crude oil production using multicyclic Hubbert model. Energy and Fuels,24(3), 1788–1800.

    Google Scholar 

  • National Development and Reform Commission of China (NRDC). (2016). In 13th five-year plan for renewable energy development. Retrieved December 10, 2018 from http://www.ndrc.gov.cn/fzgggz/fzgh/ghwb/gjjgh/201706/t20170614_850910.html.

  • National Research Council (NRC). (2008). Committee on critical mineral impacts on the US economy. Minerals, critical minerals, and the US economy. Washington, DC: The National Academies Press.

    Google Scholar 

  • O’Neill, A., Phillips, D. H., Bowen, J., & Sen Gupta, B. (2015). Contaminants in surface water and sediments near the Tynagh silver mine site, County Galway, Ireland. Science of the Total Environment,512, 261–272.

    Google Scholar 

  • Rabe, W., Kostka, G., & Stegen, K. S. (2017). China’s supply of critical raw materials: Risks for Europe’s solar and wind industries? Energy Policy,101, 692–699.

    Google Scholar 

  • Ragnarsdottir, K. V., Sverdrup, H., & Koca, D. (2012). Assessing long-term sustainability of global supply of natural resources and materials. In C. Ghenai (Ed.), Sustainable development-116. Energy, engineering and technologies—manufacturing and environment, pp. 83–116, Chapter 5, http://www.intechweb.org.

  • Rehrl, T., & Friedrich, R. (2006). Modelling long-term oil price and extraction with a Hubbert approach: The LOPEX model. Energy Policy,34(15), 2413–2428.

    Google Scholar 

  • Saifullah, M., Gwak, J., & Yun, J. H. (2016). Comprehensive review on material requirements, present status, and future prospects for building-integrated semitransparent photovoltaics (BISTPV). Journal of Materials Chemistry A,4, 8512–8540.

    Google Scholar 

  • Saraiva, T. A., Szklo, A., Lucena, A. F. P., & Chavez-Rodriguez, M. F. (2014). Forecasting Brazil’s crude oil production using a multi-Hubbert model variant. Fuel,115, 24–31.

    Google Scholar 

  • Song, J. J. (2015). Reflections on improving the efficiency of exploitation and utilization of mineral resources. Land and Resources Information,9, 28–33.

    Google Scholar 

  • Sorrell, S., & Speirs, J. (2010). Hubbert’s legacy: A review of curve-fitting methods to estimate ultimately recoverable resources. Natural Resources Research,19(3), 209–230.

    Google Scholar 

  • Sorrell, S., Speirs, J., Bentley, R., Brandt, A., & Miller, R. (2010). Global oil depletion: A review of the evidence. Energy Policy,38(9), 5290–5295.

    Google Scholar 

  • Stegen, K. S. (2015). Heavy rare earths, permanent magnets, and renewable energies: An imminent crisis. Energy Policy,79, 1–8.

    Google Scholar 

  • Sugiyama, M. (2012). Climate change mitigation and electrification. Energy Policy,44, 464–468.

    Google Scholar 

  • Tang, X., Feng, L. Y., & Zhao, L. (2009). Prediction of world oil supply pattern based on generalized Weng’s model. Resource Science,31(2), 238–242.

    Google Scholar 

  • Tiba, S., & Omri, A. (2017). Literature survey on the relationships between energy, environment and economic growth. Renewable and Sustainable Energy Reviews,69, 1129–1146.

    Google Scholar 

  • Tisserant, A., & Pauliuk, S. (2016). Matching global cobalt demand under different scenarios for co-production and mining attractiveness. Journal of Economic Structures,5(1), 4.

    Google Scholar 

  • Tokimatsu, K., Höök, M., McLellan, B., Wachtmeister, H., Murakami, S., Yasuoka, R., et al. (2018). Energy modeling approach to the global energy-mineral nexus: Exploring metal requirements and the well-below 2 °C target with 100 percent renewable energy. Applied Energy,225, 1158–1175.

    Google Scholar 

  • Tokimatsu, K., Murakami, S., Adachi, T., Ii, R., Yasuoka, R., & Nishio, M. (2017a). Long-term demand and supply of non-ferrous mineral resources by a mineral balance model. Mineral Economics,30(3), 193–206.

    Google Scholar 

  • Tokimatsu, K., Wachtmeister, H., McLellan, B., Davidsson, S., Murakami, S., Höök, M., et al. (2017b). Energy modeling approach to the global energy-mineral nexus: A first look at metal requirements and the 2 C target. Applied Energy,207, 494–509.

    Google Scholar 

  • Trump, D. (2017). U.S. Executive Order No. 13817, Presidential executive order on a federal strategy to ensure secure and reliable supplies of critical minerals. https://www.whitehouse.gov/presidential-actions/presidential-executiveorder-federal-strategy-ensure-secure-reliable-supplies-critical-minerals/.

  • United Nations (UN). (2015). Transforming our world: The 2030 Agenda for sustainable development. Accessed on 21 Oct. 2019.

  • U.S. Geological Survey (USGS). (1996–2017). Minerals Commodity Summaries 19962017. Retrieved December 5, 2018 from https://minerals.usgs.gov/minerals/pubs/mcs/.

  • Valero, A., Valero, A., Calvo, G., & Ortego, A. (2018a). Material bottlenecks in the future development of green technologies. Renewable and Sustainable Energy Reviews,93, 178–200.

    Google Scholar 

  • Valero, A., Valero, A., Calvo, G., Ortego, A., Ascaso, S., & Palacios, J. L. (2018b). Global material requirements for the energy transition. An exergy flow analysis of decarbonisation pathways. Energy,159, 1175–1184.

    Google Scholar 

  • Vikström, H., Davidsson, S., & Höök, M. (2013). Lithium availability and future production outlooks. Applied Energy,110, 252–266.

    Google Scholar 

  • Wachtmeister, H., Henke, P., & Höök, M. (2018). Oil projections in retrospect: Revisions, accuracy and current uncertainty. Applied Energy,220, 138–153.

    Google Scholar 

  • Walan, P., Davidsson, S., Johansson, S., & Höök, M. (2014). Phosphate rock production and depletion: Regional disaggregated modeling and global implications. Resources, Conservation and Recycling,93, 178–187.

    Google Scholar 

  • Wang, J., Bentley, Y., & Bentley, R. (2018a). Modeling India’s coal production with a negatively skewed curve-fitting model. Natural Resources Research,27(3), 365–378.

    Google Scholar 

  • Wang, J., & Feng, L. (2016). Curve-fitting models for fossil fuel production forecasting: Key influence factors. Journal of Natural Gas Science and Engineering,32, 138–149.

    Google Scholar 

  • Wang, J., Feng, L., Tang, X., Bentley, Y., & Höök, M. (2017a). The implications of fossil fuel supply constraints on climate change projections: A supply-side analysis. Futures,86, 58–72.

    Google Scholar 

  • Wang, J., Feng, L., & Tverberg, G. E. (2013a). An analysis of China’s coal supply and its impact on China’s future economic growth. Energy Policy,57, 542–551.

    Google Scholar 

  • Wang, J., Feng, L., Zhao, L., & Snowden, S. (2013b). China’s natural gas: Resources, production and its impacts. Energy Policy,55, 690–698.

    Google Scholar 

  • Wang, J., Feng, L., Zhao, L., Snowden, S., & Wang, X. (2011). A comparison of two typical multicyclic models used to forecast the world’s conventional oil production. Energy Policy,39(12), 7616–7621.

    Google Scholar 

  • Wang, X., Lei, Y., Ge, J., & Wu, S. (2015). Production forecast of China’s rare earths based on the Generalized Weng model and policy recommendations. Resources Policy,43, 11–18.

    Google Scholar 

  • Wang, D., Nie, R., Long, R., Shi, R., & Zhao, Y. (2018b). Scenario prediction of China’s coal production capacity based on system dynamics model. Resources, Conservation and Recycling,129, 432–442.

    Google Scholar 

  • Wang, C., Yang, B., & Tang, J. (2017b). Research progress of copper antimony sulfur group thin film materials and photovoltaic devices. Science Bulletin,14, 15–25.

    Google Scholar 

  • Wen, D. H. (2019). Study on critical mineral resources: Significance of research, determination of types, attributes of resources, progress of prospecting, problems of utilization, and direction of exploitation. Acta Geologica Sinica,93(6), 1189–1209.

    Google Scholar 

  • Xie, X. B., Yan, L., & Luo, B. (2011). Analysis of sustainable development model and mechanism of mineral resources industry. Research on Science and Technology Management,31(22), 108–112.

    Google Scholar 

  • Yolcubal, I., Demiray, A. D., Çiftçi, E., & Sanğu, E. (2016). Environmental impact of mining activities on surface water and sediment qualities around Murgul copper mine, Northeastern Turkey. Environmental Earth Sciences,75(21), 1415.

    Google Scholar 

  • Zhang, S., Dong, W., Zhao, X., Yang, X., Li, H., & Qi, Y. (2017). The role of consumption in peaking China’s Carbon Emissions by 2030. Rochester: Social Science Electronic Publishing.

    Google Scholar 

  • Zhong, J. M., Wang, L. H., Shi, W. F., Zhong, X., Ha, M., & Zheng, W. (2015). Research on silver powder for photovoltaic silver. Powder Metallurgy Industry,6, 6–13.

    Google Scholar 

  • Ziemann, S., Grunwald, A., Schebek, L., Müller, D. B., & Weil, M. (2013). The future of mobility and its critical raw materials. International Journal of Metallurgy,110(1), 47–54.

    Google Scholar 

Download references

Acknowledgements

This research has been supported by the National Natural Science Foundation of China (Grant Nos. 71874201, 71503264, 71673297, and 71874202) and the Humanities and Social Sciences Youth Foundation of the Ministry of Education of China (Grant No. 19YJCZH106). We also received helpful comments from Dr Roger Bentley of the Petroleum Analysis Centre, Ireland, and from anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianliang Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Yang, L., Lin, J. et al. The Availability of Critical Minerals for China’s Renewable Energy Development: An Analysis of Physical Supply. Nat Resour Res 29, 2291–2306 (2020). https://doi.org/10.1007/s11053-020-09615-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-020-09615-5

Keywords

Navigation