Skip to main content
Log in

Bonding VSe2 ultrafine nanocrystals on graphene toward advanced lithium-sulfur batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Lithium-sulfur batteries have been attracting considerable research attention due to their high energy densities and low costs. However, one of their main challenges is the undesired shuttling of polysulfides, causing rapid capacity degradation. Herein, we report the first example of sulfiphilic VSe2 ultrafine nanocrystals immobilized on nitrogen-doped graphene to modify the battery separator for alleviating the shuttling problem. VSe2 nanocrystals provide numerous active sites for chemisorption of polysulfides as well as benefit the nucleation and growth of Li2S. Furthermore, the kinetic reactions are accelerated which is confirmed by higher exchange current density and higher lithium ion diffusion coefficient. And the first-principles calculations further show that the exposed sulfiphilic planes of VSe2 boost the redox of Li2S. When used as separators within the lithium sulfur batteries, the cell indicates greatly enhanced electrochemical performances with excellent long cycling stability and exceptional rate capability up to 8 C. Moreover, it delivers a higher areal capacity of 4.04 mAh·cm−2 as well as superior cycling stability with sulfur areal loading up to 6.1 mg·cm−2. The present strategy can encourage us in engineering novel multifunctional separators for energy-storage devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. Li-O2 and Li-S batteries with high energy storage. Nat. Mater.2012, 11, 19–29.

    CAS  Google Scholar 

  2. Zhang, G.; Zhang, Z. W.; Peng, H. J.; Huang, J. Q.; Zhang, Q. A toolbox for lithium-sulfur battery research: Methods and protocols. Small Methods2017, 1, 1700134.

    Google Scholar 

  3. Hao, G. P.; Tang, C.; Zhang, E.; Zhai, P. Y.; Yin, J.; Zhu, W. C.; Zhang, Q.; Kaskel, S. Thermal exfoliation of layered metal-organic frameworks into ultrahydrophilic graphene stacks and their applications in Li-S batteries. Adv. Mater.2017, 29, 1702829.

    Google Scholar 

  4. Pan, H. L.; Chen, J. Z.; Cao, R. G.; Murugesan, V.; Rajput, N. N.; Han, K. S.; Persson, K.; Estevez, L.; Engelhard, M. H.; Zhang, J. G. et al. Non-encapsulation approach for high-performance Li-S batteries through controlled nucleation and growth. Nat. Energy2017, 2, 813–820.

    CAS  Google Scholar 

  5. Liu, D. H.; Zhang, C.; Zhou, G. M.; Lv, W.; Ling, G. W.; Zhi, L. J.; Yang, Q. H. Catalytic effects in lithium-sulfur batteries: Promoted sulfur transformation and reduced shuttle effect. Adv. Sci.2018, 5, 1700270.

    Google Scholar 

  6. Li, G. R.; Lei, W.; Luo, D.; Deng, Y. P.; Wang, D.; Chen, Z. W. 3D porous carbon sheets with multidirectional ion pathways for fast and durable lithium-sulfur batteries. Adv. Energy Mater.2018, 8, 1702381.

    Google Scholar 

  7. Zhou, Y. Y.; Hu, G. J.; Zhang, W. K., Li, Q. W.; Zhao, Z. G.; Zhao, Y.; Li, F.; Geng, F. X. Cationic two-dimensional sheets for an ultralight electrostatic polysulfide trap toward high-performance lithium-sulfur batteries. Energy Storage Mater.2017, 9, 39–46.

    Google Scholar 

  8. Liu, W.; Jiang, J. B.; Yang, K. R.; Mi, Y. Y.; Kumaravadivel, P.; Zhong, Y. R.; Fan, Q.; Weng, Z.; Wu, Z. S.; Cha, J. J. et al. Ultrathin dendrimer-graphene oxide composite film for stable cycling lithium-sulfur batteries. Proc. Natl. Acad. Sci. USA2017, 114, 3578–3583.

    CAS  Google Scholar 

  9. Mikhaylik, Y. V.; Akridge, J. R. Polysulfide shuttle study in the Li/S battery system. J. Electrochem. Soc.2004, 151, A1969–A1976.

    CAS  Google Scholar 

  10. Ji, X. L.; Lee, K. T.; Nazar, L. F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater.2009, 8, 500–506.

    CAS  Google Scholar 

  11. Zhang, J. H.; Huang, M.; Xi, B. J.; Mi, K.; Yuan, A. H.; Xiong, S. L. Systematic study of effect on enhancing specific capacity and electrochemical behaviors of lithium-sulfur batteries. Adv. Energy Mater.2018, 8, 1701330.

    Google Scholar 

  12. Lu, H. Y.; Zhang, C.; Zhang, Y. F.; Huang, Y. P.; Liu M. K.; Liu, T. X. Simultaneous growth of carbon nanotubes on inner/outer surfaces of porous polyhedra: Advanced sulfur hosts for lithium-sulfur batteries. Nano Res.2018, 11, 6155–6166.

    CAS  Google Scholar 

  13. Mi, K.; Jiang, Y.; Feng, J. K.; Qian, Y. T.; Xiong, S. L. Hierarchical carbon nanotubes with a thick microporous wall and inner channel as efficient scaffolds for lithium-sulfur batteries. Adv. Funct. Mater.2016, 26, 1571–1579.

    CAS  Google Scholar 

  14. Qie, L.; Manthiram, A. A facile layer-by-layer approach for high-arealcapacity sulfur cathodes. Adv. Mater.2015, 27, 1694–1700.

    CAS  Google Scholar 

  15. Zhang, C. F.; Wu, H. B.; Yuan, C. Z.; Guo, Z. P.; Lou, X. W. Confining sulfur in double-shelled hollow carbon spheres for lithium-sulfur batteries. Angew. Chem., Int. Ed.2012, 51, 9592–9595.

    CAS  Google Scholar 

  16. Jayaprakash, N.; Shen, J.; Moganty, S. S.; Corona, A.; Archer, L. A. Porous hollow carbon@sulfur composites for high-power lithium-sulfur batteries. Angew. Chem., Int. Ed.2011, 50, 5904–5908.

    CAS  Google Scholar 

  17. Zheng, G. Y.; Zhang, Q. F.; Cha, J. J.; Yang, Y.; Li, W. Y.; Seh, Z. W.; Cui, Y. Amphiphilic surface modification of hollow carbon nanofibers for improved cycle life of lithium sulfur batteries. Nano Lett.2013, 13, 1265–1270.

    CAS  Google Scholar 

  18. Li, Z.; Zhang, J. T.; Lu, Y.; Lou, X. W. A pyrolyzed polyacrylonitrile/selenium disulfide composite cathode with remarkable lithium and sodium storage performances. Sci. Adv.2018, 4, eaat1687.

    Google Scholar 

  19. Fu, Y. Z.; Manthiram, A. Orthorhombic bipyramidal sulfur coated with polypyrrole nanolayers as a cathode material for lithium-sulfur batteries. J. Phys. Chem. C2012, 116, 8910–8915.

    CAS  Google Scholar 

  20. Zhou, W. D.; Yu, Y. C.; Chen, H.; DiSalvo, F. J.; Abruña, H. D. Yolk-shell structure of polyaniline-coated sulfur for lithium-sulfur batteries. J. Am. Chem. Soc.2013, 135, 16736–16743.

    CAS  Google Scholar 

  21. Li, Z.; Zhang, J. T.; Lou, X. W. Hollow carbon nanofibers filled with MnO2 nanosheets as efficient sulfur hosts for lithium-sulfur batteries. Angew. Chem., Int. Ed.2015, 54, 12886–12890.

    CAS  Google Scholar 

  22. Liang, X.; Hart, C.; Pang, Q.; Garsuch, A.; Weiss, T.; Nazar, L. F. A highly efficient polysulfide mediator for lithium-sulfur batteries. Nat. Commun.2015, 6, 5682.

    Google Scholar 

  23. Li, Z.; Guan, B. Y.; Zhang, J. T.; Lou, X. W. A compact nanoconfined sulfur cathode for high-performance lithium-sulfur batteries. Joule2017, 1, 576–587.

    CAS  Google Scholar 

  24. Lin, C.; Qu, L. B.; Li, J. T.; Cai, Z. Y.; Liu, H. Y.; He, P.; Xu, X.; Mai, L. Q. Porous nitrogen-doped carbon/MnO coaxial nanotubes as an efficient sulfur host for lithium sulfur batteries. Nano Res.2019, 12, 205–210.

    CAS  Google Scholar 

  25. Sun, Q.; Xi, B. J.; Li, J. Y.; Mao, H. Z.; Ma, X. J.; Liang, J. W.; Feng, J. K.; Xiong, S. L. Nitrogen-doped graphene-supported mixed transition-metal oxide porous particles to confine polysulfides for lithium-sulfur batteries. Adv. Energy Mater.2018, 8, 1800595.

    Google Scholar 

  26. Chen, L.; Yang, W. W.; Liu, J. G.; Zhou Y. Decorating CoSe2 hollow nanospheres on reduced graphene oxide as advanced sulfur host material for performance enhanced lithium-sulfur batteries. Nano Res.2019, 12, 2743–2748.

    CAS  Google Scholar 

  27. Yuan, Z.; Peng, H. J.; Hou, T. Z.; Huang, J. Q.; Chen, C. M.; Wang, D. W.; Cheng, X. B.; Wei, F.; Zhang, Q. Powering lithium-sulfur battery performance by propelling polysulfide redox at sulfiphilic hosts. Nano Lett.2016, 16, 519–527.

    CAS  Google Scholar 

  28. Ye, C.; Zhang, L.; Guo, C. X.; Li, D. D.; Vasileff, A.; Wang, H. H.; Qiao, S. Z. A 3D hybrid of chemically coupled nickel sulfide and hollow carbon spheres for high performance lithium-sulfur batteries. Adv. Funct. Mater.2017, 27, 1702524.

    Google Scholar 

  29. Peng, H. J.; Zhang, G.; Chen, X.; Zhang, Z. W.; Xu, W. T.; Huang, J. Q.; Zhang, Q. Enhanced electrochemical kinetics on conductive polar mediators for lithium-sulfur batteries. Angew. Chem., Int. Ed.2016, 55, 12990–12995.

    CAS  Google Scholar 

  30. Zhou, T. H.; Zhao, Y.; Zhou, G. M.; Lv, W.; Sun, P. J.; Kang, F. Y.; Li, B. H.; Yang, Q. H. An in-plane heterostructure of graphene and titanium carbide for efficient polysulfide confinement. Nano Energy2017, 39, 291–296.

    CAS  Google Scholar 

  31. Zhong, Y. R.; Yin, L. C.; He, P.; Liu, W.; Wu, Z. S.; Wang, H. L. Surface chemistry in cobalt phosphide-stabilized lithium-sulfur batteries. J. Am. Chem. Soc.2018, 140, 1455–1459.

    CAS  Google Scholar 

  32. Zhang, J. T.; Hu, H.; Li, Z.; Lou, X. W. Double-shelled nanocages with cobalt hydroxide inner shell and layered double hydroxides outer shell as high-efficiency polysulfide mediator for lithium-sulfur batteries. Angew. Chem., Int. Ed.2016, 55, 3982–3986.

    CAS  Google Scholar 

  33. Jiang, J.; Zhu, J. H.; Ai, W.; Wang, X. L.; Wang, Y. L.; Zou, C. J.; Huang, W.; Yu, T. Encapsulation of sulfur with thin-layered nickel-based hydroxides for long-cyclic lithium-sulfur cells. Nat. Commun.2015, 6, 8622.

    CAS  Google Scholar 

  34. Zhou, J. W.; Li, R.; Fan, X. X.; Chen, Y. F.; Han, R. D.; Li, W.; Zheng, J.; Wang, B.; Li, X. G. Rational design of a metal-organic framework host for sulfur storage in fast, long-cycle Li-S batteries. Energy Environ. Sci.2014, 7, 2715–2724.

    CAS  Google Scholar 

  35. Liu, J.; Qian, T.; Xu, N.; Wang, M. F.; Zhou, J. Q.; Shen, X. W.; Yan, C. L. Dendrite-free and ultra-high energy lithium sulfur battery enabled by dimethyl polysulfide intermediates. Energy Storage Mater.2020, 24, 265–271.

    Google Scholar 

  36. Chen, W.; Qian, T.; Xiong, J.; Xu, N.; Liu, J.; Zhou, J. Q.; Shen, X.; Yang, T. Z.; Chen, Y.; Yan, C. L. A new type of multifunctional polar binder: Toward practical application of high energy lithium sulfur batteries. Adv. Mater.2017, 29, 1605160.

    Google Scholar 

  37. Yuan, H.; Huang, J. Q.; Peng, H. J.; Titirici, M. M.; Xiang, R.; Chen, R. J.; Liu, Q. B.; Zhang, Q. A review of functional binders in lithium-sulfur batteries. Adv. Energy Mater.2018, 8, 1802107.

    Google Scholar 

  38. Niu, C. Q.; Liu, J.; Qian, T.; Shen, X. W.; Zhou, J. Q.; Yan, C. L. Single lithium-ion channel polymer binder for stabilizing sulfur cathodes. Natl. Sci. Rev.2020, 7, 315–323.

    CAS  Google Scholar 

  39. Zhuang, T. Z.; Huang, J. Q.; Peng, H. J.; He, L. Y.; Cheng, X. B.; Chen, C. M.; Zhang, Q. Rational integration of polypropylene/graphene oxide/nafion as ternary-layered separator to retard the shuttle of polysulfides for lithium-sulfur batteries. Small2016, 12, 381–389.

    CAS  Google Scholar 

  40. Su, Y. S.; Manthiram, A. Lithium-sulphur batteries with a microporous carbon paper as a bifunctional interlayer. Nat. Commun.2012, 3, 1166.

    Google Scholar 

  41. Chung, S. H.; Han, P.; Singhal, R.; Kalra, V.; Manthiram, A. Electrochemically stable rechargeable lithium-sulfur batteries with a microporous carbon nanofiber filter for polysulfide. Adv. Energy Mater.2015, 5, 1500738.

    Google Scholar 

  42. Yao, H. B.; Yan, K.; Li, W. Y.; Zheng, G. Y.; Kong, D. S.; Seh, Z. W.; Narasimhan, V. K.; Liang, Z.; Cui, Y. Improved lithium-sulfur batteries with a conductive coating on the separator to prevent the accumulation of inactive S-related species at the cathode-separator interface. Energy Environ. Sci.2014, 7, 3381–3390.

    CAS  Google Scholar 

  43. Liang, X.; Hart, C.; Pang, Q.; Garsuch, A.; Weiss, T.; Nazar, L. F. A highly efficient polysulfide mediator for lithium-sulfur batteries. Nat. Commun.2015, 6, 5682.

    Google Scholar 

  44. Hu, Z.; Liu, Q. N.; Chou, S. L.; Dou, S. X. Advances and challenges in metal sulfides/selenides for next-generation rechargeable sodium-ion batteries. Adv. Mater.2017, 29, 1700606.

    Google Scholar 

  45. Zhu, P.; Zhu, J. D.; Zang, J.; Chen, C.; Lu, Y.; Jiang, M. J.; Yan, C. Y.; Dirican, M.; Selvan, R. K.; Zhang, X. W. A novel bi-functional double-layer rGO-PVDF/PVDF composite nanofiber membrane separator with enhanced thermal stability and effective polysulfide inhibition for high-performance lithium-sulfur batteries. J. Mater. Chem. A2017, 5, 15096–15104.

    CAS  Google Scholar 

  46. Huang, J. Q.; Zhang, Q.; Peng, H. J.; Liu, X. Y.; Qian, W. Z.; Wei, F. Ionic shield for polysulfides towards highly-stable lithium-sulfur batteries. Energy Environ. Sci.2014, 7, 347–353.

    CAS  Google Scholar 

  47. Kong, Y. W.; An, L.; Luo, Y.; Wang, D.; Jiang, K.; Li, Q.; Fan, S.; Wang, J. Ultrathin MnO2/graphene oxide/carbon nanotube interlayer as efficient polysulfide-trapping shield for high-performance Li-S batteries. Adv. Funct. Mater.2017, 27, 1606663.

    Google Scholar 

  48. Fan, L. L.; Li, M.; Li, X. F.; Xiao, W.; Chen, Z. W.; Lu, J. Interlayer material selection for lithium-sulfur batteries. Joule2019, 3, 361–386.

    CAS  Google Scholar 

  49. Huang, J. Q.; Zhuang, T. Z.; Zhang, Q.; Peng, H. J.; Chen, C. M.; Wei, F. Permselective graphene oxide membrane for highly stable and anti-self-discharge lithium-sulfur batteries. ACS Nano2015, 9, 3002–3011.

    CAS  Google Scholar 

  50. Li, W.; Hicks-Garner, J.; Wang, J.; Liu, J.; Gross, A. F.; Sherman, E.; Graetz, J.; Vajo, J. J.; Liu, P. V2O5 polysulfide anion barrier for long-lived Li-S batteries. Chem. Mater.2014, 26, 3403–3410.

    CAS  Google Scholar 

  51. Bai, S. Y.; Liu, X. Z.; Zhu, K.; Wu, S. C.; Zhou, H. S. Metal-organic framework-based separator for lithium-sulfur batteries. Nat. Energy2016, 7, 16094.

    Google Scholar 

  52. Zhang, Z. P.; Niu, J. J.; Yang, P. F.; Gong, Y.; Ji, Q. Q.; Shi, J. P.; Fang, Q. Y.; Jiang, S. L.; Li, H.; Zhou, X. B. et al. Van der Waals epitaxial growth of 2D metallic vanadium diselenide single crystals and their extra-high electrical conductivity. Adv. Mater.2017, 29, 1702359.

    Google Scholar 

  53. Marcano, D. C.; Kosynkin, D. V.; Berlin, J. M.; Sinitskii, A.; Sun, Z. Z.; Slesarev, A.; Alemany, L. B.; Lu, W.; Tour, J. M. Improved synthesis of graphene oxide. ACS Nano2010, 4, 4806–4814.

    CAS  Google Scholar 

  54. Ghazi, Z. A.; He, X.; Khattak, A. M.; Khan, N. A.; Liang, B.; Iqbal, Z.; Wang, J. X.; Sin, H.; Li, L. S.; Tang, Z. Y. MoS2/celgard separator as efficient polysulfide barrier for long-life lithium-sulfur batteries. Adv. Mater.2017, 29, 1606817.

    Google Scholar 

  55. Kong, L.; Chen, J. X.; Peng, H. J.; Huang, J. Q.; Zhu, W. C.; Jin, Q.; Li, B. Q.; Zhang, X. T.; Zhang, Q. Current-density dependence of Li2S/Li2S2 growth in lithium-sulfur batteries. Energy Environ. Sci.2019, 12, 2976–2982.

    CAS  Google Scholar 

  56. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B1996, 54, 11169–11186.

    CAS  Google Scholar 

  57. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B1994, 50, 17953–17979.

    Google Scholar 

  58. Dion, M.; Rydberg, H.; Schröder, E.; Langreth, D. C.; Lundqvist, B. I. Van der Waals density functional for general geometries. Phys. Rev. Lett.2004, 92, 246401.

    CAS  Google Scholar 

  59. Henkelman, G.; Uberuaga, B. P.; Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys.2000, 113, 9901–9904.

    CAS  Google Scholar 

  60. Yang, C.; Feng, J. R.; Lv, F.; Zhou, J. H.; Lin, C. F.; Wang, K.; Zhang, Y. L.; Yang, Y.; Wang, W.; Li, J. B. et al. Metallic graphene-like VSe2 ultrathin nanosheets: Superior potassium-ion storage and their working mechanism. Adv. Mater.2018, 30, 1800036.

    Google Scholar 

  61. Yuan, H.; Peng, H. J.; Li, B. Q.; Xie, J.; Kong, L.; Zhao, M.; Chen, X.; Huang, J. Q.; Zhang, Q. Conductive and catalytic triple-phase interfaces enabling uniform nucleation in high-rate lithium-sulfur batteries. Adv. Energy Mater.2019, 9, 1802768.

    Google Scholar 

  62. Kong, L.; Chen, X.; Li, B. Q.; Peng, H. J.; Huang, J. Q.; Xie, J.; Zhang, Q. A bifunctional perovskite promoter for polysulfide regulation toward stable lithium-sulfur batteries. Adv. Mater.2018, 30, 1705219.

    Google Scholar 

  63. Fan, F. Y.; Carter, W. C.; Chiang, Y. M. Mechanism and kinetics of Li2S precipitation in lithium-sulfur batteries. Adv. Mater.2015, 27, 5203–5209.

    CAS  Google Scholar 

  64. Zhou, J. B.; Liu, X. J.; Zhu, L. Q.; Zhou, J.; Guan, Y.; Chen, L.; Niu, S. W.; Cai, J. Y.; Sun, D.; Zhu, Y. C. et al. Deciphering the modulation essence of p bands in Co-based compounds on Li-S chemistry. Joule2018, 2, 2681–2693.

    CAS  Google Scholar 

  65. Shi, H. F.; Lv, W.; Zhang, C.; Wang, D. W.; Ling, G. W.; He, Y. B.; Kang, F. Y.; Yang, Q. H. Functional carbons remedy the shuttling of polysulfides in lithium-sulfur batteries: Confining, trapping, blocking, and breaking up. Adv. Funct. Mater.2018, 28, 1800508.

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial supports provided by the National Natural Science Foundation of China (Nos. 21871164, 21803036, and U1764258), the Taishan Scholar Project Foundation of Shandong Province (Nos. ts20190908 and ts201511004), and the National Science Foundation of Shandong Province (No. ZR2019MB024). The theoretical calculations in this work were performed on the HPC Cloud Platform of Shandong University. We also thank Anhui Kemi Machinery Technology Co., Ltd for providing Teflon-lined stainless steel autoclave.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shenglin Xiong.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, W., Xi, B., Gu, Y. et al. Bonding VSe2 ultrafine nanocrystals on graphene toward advanced lithium-sulfur batteries. Nano Res. 13, 2673–2682 (2020). https://doi.org/10.1007/s12274-020-2909-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2909-3

Keywords

Navigation