Skip to main content
Log in

Measurement of the Background Activities of a 100Mo-enriched Powder Sample for an AMoRE Crystal Material by Using a Single High-Purity Germanium Detector

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

An Erratum to this article was published on 15 February 2022

This article has been updated

Abstract

The Advanced Molybdenum-based Rare process Experiment (AMoRE) searches for neutrino-less double-beta (0νββ) decay of 100Mo in enriched molybdate crystals. The AMoRE crystals must have low levels of radioactive contamination to achieve low background signals with energies near the Q-value of the 100Mo 0νββ decay. To produce low-activity crystals, radioactive contaminants in the raw materials used to form the crystals must be controlled and quantified. 100EnrMoO3 powder, which is enriched in the 100Mo isotope, is of particular interest as it is the source of 100Mo in the crystals. A high-purity germanium detector having 100% relative efficiency, named CC1, is being operated in the Yangyang underground laboratory. Using CC1, we collected a gamma spectrum from a 1.6-kg 100EnrMoO3 powder sample enriched to 96.4% in 100Mo. Activities were analyzed for the isotopes 228Ac, 228Th, 226Ra, and 40K. They are long-lived naturally occurring isotopes that can produce background signals in the region of interest for AMoRE. Activities of both 228Ac and 228Th were < 1.0 mBq/kg at 90% confidence level (C.L.). The activity of 226Ra was measured to be 5.1 ± 0.4 (stat) ± 2.2 (syst) mBq/kg. The 40K activity was found as < 16.4 mBq/kg at 90% C.L.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Change history

References

  1. S. Rahaman et al., Phys. Lett. B 662, 111 (2008).

    Article  ADS  Google Scholar 

  2. A. S. Barabash and V. B. Brudanin, Phys. At. Nucl. 74, 312 (2011).

    Article  Google Scholar 

  3. V. Alenkov, arXiv:1512.05957v1 [physics.ins-det] (2015).

    Google Scholar 

  4. H. K. Park, Nucl. Part. Phys. Proc. 273, 2630 (2016).

    Article  Google Scholar 

  5. V. Alenkov et al., Eur. Phys. J. C 79, 791 (2019).

    Article  ADS  Google Scholar 

  6. G. B. Kim et al., Adv. High Energy Phys. 2015, 817530 (2015).

    Article  Google Scholar 

  7. G. B. Kim, A 0νββ search using large scintillating crystal with metallic magnetic calorimeter, Ph.D. Dissertation, Seoul National University, 2016.

    Google Scholar 

  8. J. H. So et al., IEEE Trans. Nucl. Sci. 59, 2214 (2012).

    Article  ADS  Google Scholar 

  9. J. Y. Lee et al., IEEE Trans. Nucl. Sci. 63, 543 (2016).

    Article  ADS  Google Scholar 

  10. J. Y. Lee et al., IEEE Trans. Nucl. Sci. 65, 2041 (2018).

    Article  ADS  Google Scholar 

  11. M. H. Lee et al., in Proceedings of the 39th International Conference on High Energy Physics (Seoul, Korea, July 4–11, 2018), PoS (ICHEP2018) 340, 363 (2019).

    Article  Google Scholar 

  12. E. Lee et al., in Proceedings of the 39th International Conference on High Energy Physics (Seoul, Korea, July 4–11, 2018), PoS (ICHEP2018) 340, 809 (2019).

    Article  Google Scholar 

  13. A. Luqman et al., Nucl. Instrum. Methods Phys. Res. A 855, 140 (2017).

    Article  ADS  Google Scholar 

  14. O. Gileva et al., J Radioanal. Nucl. Chem. 314, 1695 (2017).

    Article  Google Scholar 

  15. G. Kim, Rare Decay Experiments for 180mTa and208Pb* Using HPGe Detectors, Ph.D. Dissertation, Ewha Womans University, 2019.

    Google Scholar 

  16. JSC isotope, http://www.isotop.ru/en/.

  17. National Nuclear Data Center, https://www.nndc.bnl.gov/nudat2/.

  18. S. Agostinelli et al., Nucl. Instrum. Methods Phys. Res. A 506, 250 (2003).

    Article  ADS  Google Scholar 

  19. M. Yoshimori et al., Adv. Space Res. 32, 2691 (2003).

    Article  ADS  Google Scholar 

  20. G. F. Knoll, Radiation Detection and Measurement (John Wiley and Sons, New York, 2000), Ed. 3, Chap. 12, p. 413.

    Google Scholar 

  21. E. Sala et al., AIP Conf. Proc. 1672, 120001 (2015).

    Article  Google Scholar 

  22. E. Sala et al., J. Phys.: Conf. Ser. 718, 062050 (2016).

    Google Scholar 

  23. A. N. Annenkov et al., Nucl. Instrum. Methods Phys. Res. A 584, 334 (2008).

    Article  ADS  Google Scholar 

  24. S. Y. Park et al., in Proceedings of the 39th International Conference on High Energy Physics (Seoul, Korea, July 4–11, 2018), PoS (ICHEP2018) 340, 783 (2019).

    Article  Google Scholar 

Download references

Acknowledgments

Thisworkwas supported by the Institute forBasic Science (IBS) funded by the Ministry of Science and Technology, Korea (Grant id: IBS-R016-D1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gowoon Kim.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, Sy., Hahn, I., Kang, W.G. et al. Measurement of the Background Activities of a 100Mo-enriched Powder Sample for an AMoRE Crystal Material by Using a Single High-Purity Germanium Detector. J. Korean Phys. Soc. 76, 1060–1066 (2020). https://doi.org/10.3938/jkps.76.1060

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.76.1060

Keywords

Navigation