Skip to main content

Advertisement

Log in

Tumor Heterogeneity and Phenotypic Plasticity in Bladder Carcinoma

  • Review Article
  • Published:
Journal of the Indian Institute of Science Aims and scope

Abstract

Bladder carcinoma is the most common malignancy of the urinary system with a high recurrence rate. As of today, bladder carcinoma does not sufficiently benefit from new therapeutic strategies. The molecularly heterogeneous landscape contributes an enormous challenge in the management of this cancer. Consensus clustering based on gene expression data from muscle-invasive and non-muscle-invasive tumors identified multiple intrinsic molecular subsets of this cancer. In our recent study, we have computed epithelial-mesenchymal transition (EMT) scores of three key bladder cancer subtypes followed by the comparative phosphoproteomics profiling of the molecular subtypes. The most aggressive non-type bladder subtype correlated with a mesenchymal-like phenotype. The improved stratification of the molecular features of these subtypes would provide a new opportunity for a deeper understanding of disease pathogenesis. This review focuses on the concepts of cellular plasticity and heterogeneity in bladder carcinoma. We also raised some of the challenges during the discovery and therapeutic intervention of targeted therapy and its clinical implication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.

Similar content being viewed by others

References

  1. Gondkar K, Patel K, Krishnappa S, Patil A, Nair B, Sundaram GM, Zea TT, Kumar P (2019) E74 like ETS transcription factor 3 (ELF3) is a negative regulator of epithelial- mesenchymal transition in bladder carcinoma. Cancer Biomark 25:223–232. https://doi.org/10.3233/CBM-190013

    Article  CAS  Google Scholar 

  2. McConkey DJ, Choi W (2018) Molecular subtypes of bladder cancer. Curr Oncol Rep 20:77. https://doi.org/10.1007/s11912-018-0727-5

    Article  CAS  Google Scholar 

  3. Sharma J, Deb B, George IA, Kapil S, Coral K, Kakkar N, Pattanaik S, Mandal AK, Mavuduru RS, Kumar P (2019) Somatic mutations profile of a young patient with metastatic urothelial carcinoma reveals mutations in genes involved in ion channels. Front Oncol 9:435. https://doi.org/10.3389/fonc.2019.00435

    Article  Google Scholar 

  4. Thomsen MB, Nordentoft I, Lamy P, Hoyer S, Vang S, Hedegaard J, Borre M, Jensen JB, Orntoft TF, Dyrskjot L (2016) Spatial and temporal clonal evolution during development of metastatic urothelial carcinoma. Mol Oncol 10:1450–1460. https://doi.org/10.1016/j.molonc.2016.08.003

    Article  Google Scholar 

  5. Simon R, Eltze E, Schafer KL, Burger H, Semjonow A, Hertle L, Dockhorn-Dworniczak B, Terpe HJ, Bocker W (2001) Cytogenetic analysis of multifocal bladder cancer supports a monoclonal origin and intraepithelial spread of tumor cells. Cancer Res 61:355–362

    CAS  Google Scholar 

  6. Kompier LC, Lurkin I, van der Aa MN, van Rhijn BW, van der Kwast TH, Zwarthoff EC (2010) FGFR3, HRAS, KRAS, NRAS and PIK3CA mutations in bladder cancer and their potential as biomarkers for surveillance and therapy. PLoS ONE 5:e13821. https://doi.org/10.1371/journal.pone.0013821

    Article  CAS  Google Scholar 

  7. Dyrskjot L, Reinert T, Novoradovsky A, Zuiverloon TC, Beukers W, Zwarthoff E, Malats N, Real FX, Segersten U, Malmstrom PU et al (2012) Analysis of molecular intra-patient variation and delineation of a prognostic 12-gene signature in non-muscle invasive bladder cancer; technology transfer from microarrays to PCR. Br J Cancer 107:1392–1398. https://doi.org/10.1038/bjc.2012.412

    Article  CAS  Google Scholar 

  8. Balakrishnan A, Koppaka D, Anand A, Deb B, Grenci G, Viasnoff V, Thompson EW, Gowda H, Bhat R, Rangarajan A et al (2019) Circulating tumor cell cluster phenotype allows monitoring response to treatment and predicts survival. Sci Rep 9:7933. https://doi.org/10.1038/s41598-019-44404-y

    Article  CAS  Google Scholar 

  9. Yadavalli S, Jayaram S, Manda SS, Madugundu AK, Nayakanti DS, Tan TZ, Bhat R, Rangarajan A, Chatterjee A, Gowda H et al (2017) Data-driven discovery of extravasation pathway in circulating tumor cells. Sci Rep 7:43710. https://doi.org/10.1038/srep43710

    Article  CAS  Google Scholar 

  10. Balakrishnan A, George IA, Kumar P (2020) Circulating tumor cells as an emerging tool in cancer therapy. Front Biosci (Landmark Ed) 25:606–631

    Article  CAS  Google Scholar 

  11. Raja R, Pandey A, Kumar P (2020) Epithelial to mesenchymal plasticity: role in cancer progression. Front Biosci (Landmark Ed) 25:838–873

    Article  CAS  Google Scholar 

  12. Khoo BL, Lee SC, Kumar P, Tan TZ, Warkiani ME, Ow SG, Nandi S, Lim CT, Thiery JP (2015) Short-term expansion of breast circulating cancer cells predicts response to anti-cancer therapy. Oncotarget 6:15578–15593. https://doi.org/10.18632/oncotarget.3903

    Article  Google Scholar 

  13. Garg M, Singh R (2019) Epithelial-to-mesenchymal transition: event and core associates in bladder cancer. Front Biosci (Elite Ed) 11:150–165

    Article  Google Scholar 

  14. Garg M (2013) Epithelial-mesenchymal transition—activating transcription factors—multifunctional regulators in cancer. World J Stem Cells 5:188–195. https://doi.org/10.4252/wjsc.v5.i4.188

    Article  Google Scholar 

  15. Bryan RT (2015) Cell adhesion and urothelial bladder cancer: the role of cadherin switching and related phenomena. Philos Trans R Soc Lond B Biol Sci 370:20140042. https://doi.org/10.1098/rstb.2014.0042

    Article  CAS  Google Scholar 

  16. Thievessen I, Seifert HH, Swiatkowski S, Florl AR, Schulz WA (2003) E-cadherin involved in inactivation of WNT/beta-catenin signalling in urothelial carcinoma and normal urothelial cells. Br J Cancer 88:1932–1938. https://doi.org/10.1038/sj.bjc.6601031

    Article  CAS  Google Scholar 

  17. Zhan T, Rindtorff N, Boutros M (2017) Wnt signaling in cancer. Oncogene 36:1461–1473. https://doi.org/10.1038/onc.2016.304

    Article  CAS  Google Scholar 

  18. Gondkar K, Patel K, Patil Okaly GV, Nair B, Pandey A, Gowda H, Kumar P (2019) Dickkopf homolog 3 (DKK3) acts as a potential tumor suppressor in gallbladder cancer. Front Oncol 9:1121. https://doi.org/10.3389/fonc.2019.01121

    Article  Google Scholar 

  19. Suyama K, Shapiro I, Guttman M, Hazan RB (2002) A signaling pathway leading to metastasis is controlled by N-cadherin and the FGF receptor. Cancer Cell 2:301–314. https://doi.org/10.1016/s1535-6108(02)00150-2

    Article  CAS  Google Scholar 

  20. Liu B, Miyake H, Nishikawa M, Fujisawa M (2015) Expression profile of epithelial-mesenchymal transition markers in non-muscle-invasive urothelial carcinoma of the bladder: correlation with intravesical recurrence following transurethral resection. Urol Oncol 33(110):e111–118. https://doi.org/10.1016/j.urolonc.2014.08.012

    Article  CAS  Google Scholar 

  21. Migita T, Ueda A, Ohishi T, Hatano M, Seimiya H, Horiguchi SI, Koga F, Shibasaki F (2017) Epithelial-mesenchymal transition promotes SOX2 and NANOG expression in bladder cancer. Lab Invest. https://doi.org/10.1038/labinvest.2017.17

    Article  Google Scholar 

  22. Tan TZ, Rouanne M, Tan KT, Huang RY, Thiery JP (2019) Molecular subtypes of urothelial bladder cancer: results from a meta-cohort analysis of 2411 tumors. Eur Urol 75:423–432. https://doi.org/10.1016/j.eururo.2018.08.027

    Article  CAS  Google Scholar 

  23. Sjodahl G, Eriksson P, Liedberg F, Hoglund M (2017) Molecular classification of urothelial carcinoma: global mRNA classification versus tumour-cell phenotype classification. J Pathol 242:113–125. https://doi.org/10.1002/path.4886

    Article  CAS  Google Scholar 

  24. Comprehensive molecular characterization of urothelial bladder carcinoma (2014) Nature 507:315–322. https://doi.org/10.1038/nature12965

    Article  CAS  Google Scholar 

  25. Robertson AG, Kim J, Al-Ahmadie H, Bellmunt J, Guo G, Cherniack AD, Hinoue T, Laird PW, Hoadley KA, Akbani R et al (2018) Comprehensive molecular characterization of muscle-invasive bladder cancer. Cell 174:1033. https://doi.org/10.1016/j.cell.2018.07.036

    Article  CAS  Google Scholar 

  26. Rebouissou S, Bernard-Pierrot I, de Reynies A, Lepage ML, Krucker C, Chapeaublanc E, Herault A, Kamoun A, Caillault A, Letouze E et al (2014) EGFR as a potential therapeutic target for a subset of muscle-invasive bladder cancers presenting a basal-like phenotype. Sci Transl Med 6:244–291. https://doi.org/10.1126/scitranslmed.3008970

    Article  CAS  Google Scholar 

  27. Seiler R, Ashab HAD, Erho N, van Rhijn BWG, Winters B, Douglas J, Van Kessel KE, Fransen van de Putte EE, Sommerlad M, Wang NQ et al (2017) Impact of molecular subtypes in muscle-invasive bladder cancer on predicting response and survival after neoadjuvant chemotherapy. Eur Urol 72:544–554. https://doi.org/10.1016/j.eururo.2017.03.030

    Article  CAS  Google Scholar 

  28. Sjodahl G, Lauss M, Lovgren K, Chebil G, Gudjonsson S, Veerla S, Patschan O, Aine M, Ferno M, Ringner M et al (2012) A molecular taxonomy for urothelial carcinoma. Clin Cancer Res 18:3377–3386. https://doi.org/10.1158/1078-0432.CCR-12-0077-T

    Article  CAS  Google Scholar 

  29. Choi W, Porten S, Kim S, Willis D, Plimack ER, Hoffman-Censits J, Roth B, Cheng T, Tran M, Lee IL et al (2014) Identification of distinct basal and luminal subtypes of muscle-invasive bladder cancer with different sensitivities to frontline chemotherapy. Cancer Cell 25:152–165. https://doi.org/10.1016/j.ccr.2014.01.009

    Article  CAS  Google Scholar 

  30. Aine M, Eriksson P, Liedberg F, Sjodahl G, Hoglund M (2015) Biological determinants of bladder cancer gene expression subtypes. Sci Rep 5:10957. https://doi.org/10.1038/srep10957

    Article  Google Scholar 

  31. Hurst CD, Alder O, Platt FM, Droop A, Stead LF, Burns JE, Burghel GJ, Jain S, Klimczak LJ, Lindsay H et al (2017) Genomic subtypes of non-invasive bladder cancer with distinct metabolic profile and female gender bias in KDM6A mutation frequency. Cancer Cell 32(701–715):e707. https://doi.org/10.1016/j.ccell.2017.08.005

    Article  CAS  Google Scholar 

  32. Damrauer JS, Hoadley KA, Chism DD, Fan C, Tiganelli CJ, Wobker SE, Yeh JJ, Milowsky MI, Iyer G, Parker JS et al (2014) Intrinsic subtypes of high-grade bladder cancer reflect the hallmarks of breast cancer biology. Proc Natl Acad Sci USA 111:3110–3115. https://doi.org/10.1073/pnas.1318376111

    Article  CAS  Google Scholar 

  33. Hedegaard J, Lamy P, Nordentoft I, Algaba F, Hoyer S, Ulhoi BP, Vang S, Reinert T, Hermann GG, Mogensen K et al (2016) Comprehensive transcriptional analysis of early-stage urothelial carcinoma. Cancer Cell 30:27–42. https://doi.org/10.1016/j.ccell.2016.05.004

    Article  CAS  Google Scholar 

  34. Mohan SV, Nayakanti DS, Sathe G, George IA, Gowda H, Kumar P (2020) Targeted proteomics as a tool for quantifying urine-based biomarkers. Methods Mol Biol 2051:277–295. https://doi.org/10.1007/978-1-4939-9744-2_12

    Article  CAS  Google Scholar 

  35. Deb B, George IA, Sharma J, Kumar P (2020) Phosphoproteomics profiling to identify altered signaling pathways and kinase-targeted cancer therapies. Methods Mol Biol 2051:241–264. https://doi.org/10.1007/978-1-4939-9744-2_10

    Article  CAS  Google Scholar 

  36. Kumar P, Nandi S, Tan TZ, Ler SG, Chia KS, Lim WY, Butow Z, Vordos D, De la Taille A, Al-Haddawi M et al (2015) Highly sensitive and specific novel biomarkers for the diagnosis of transitional bladder carcinoma. Oncotarget 6:13539–13549. https://doi.org/10.18632/oncotarget.3841

    Article  Google Scholar 

  37. Deb B, Patel K, Sathe G, Kumar P, (2019) N-Glycoproteomic profiling reveals alteration in extracellular matrix organization in non-type bladder carcinoma. J Clin Med, 8. doi: 10.3390/jcm8091303.

  38. Tan M, Zhang D, Zhang E, Xu D, Liu Z, Qiu J, Fan Y, Shen B (2017) SENP2 suppresses epithelial-mesenchymal transition of bladder cancer cells through deSUMOylation of TGF-betaRI. Mol Carcinog 56:2332–2341. https://doi.org/10.1002/mc.22687

    Article  CAS  Google Scholar 

  39. Sun Y, Guan Z, Liang L, Cheng Y, Zhou J, Li J, Xu Y (2016) NF-kappaB signaling plays irreplaceable roles in cisplatin-induced bladder cancer chemoresistance and tumor progression. Int J Oncol 48:225–234. https://doi.org/10.3892/ijo.2015.3256

    Article  CAS  Google Scholar 

  40. Gyrd-Hansen M (2017) All roads lead to ubiquitin. Cell Death Differ 24:1135–1136. https://doi.org/10.1038/cdd.2017.93

    Article  CAS  Google Scholar 

  41. Rose WC, Lee FY, Fairchild CR, Lynch M, Monticello T, Kramer RA, Manne V (2001) Preclinical antitumor activity of BMS-214662, a highly apoptotic and novel farnesyltransferase inhibitor. Cancer Res 61:7507–7517

    CAS  Google Scholar 

  42. Warrick JI, Walter V, Yamashita H, Chung E, Shuman L, Amponsa VO, Zheng Z, Chan W, Whitcomb TL, Yue F et al (2016) FOXA1, GATA3 and PPAR cooperate to drive luminal subtype in bladder cancer: a molecular analysis of established human cell lines. Sci Rep 6:38531. https://doi.org/10.1038/srep38531

    Article  CAS  Google Scholar 

  43. Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S, Wilson CJ, Lehar J, Kryukov GV, Sonkin D et al (2012) The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483:603–607. https://doi.org/10.1038/nature11003

    Article  CAS  Google Scholar 

  44. Pastushenko I, Brisebarre A, Sifrim A, Fioramonti M, Revenco T, Boumahdi S, Van Keymeulen A, Brown D, Moers V, Lemaire S et al (2018) Identification of the tumour transition states occurring during EMT. Nature 556:463–468. https://doi.org/10.1038/s41586-018-0040-3

    Article  CAS  Google Scholar 

  45. Yun SJ, Kim WJ (2013) Role of the epithelial-mesenchymal transition in bladder cancer: from prognosis to therapeutic target. Korean J Urol 54:645–650. https://doi.org/10.4111/kju.2013.54.10.645

    Article  Google Scholar 

  46. Zhang X, Jiang G, Cai Y, Monkley SJ, Critchley DR, Sheetz MP (2008) Talin depletion reveals independence of initial cell spreading from integrin activation and traction. Nat Cell Biol 10:1062–1068. https://doi.org/10.1038/ncb1765

    Article  CAS  Google Scholar 

  47. He Y, Ren Y, Wu B, Decourt B, Lee AC, Taylor A, Suter DM (2015) Src and cortactin promote lamellipodia protrusion and filopodia formation and stability in growth cones. Mol Biol Cell 26:3229–3244. https://doi.org/10.1091/mbc.E15-03-0142

    Article  CAS  Google Scholar 

  48. Mise N, Savai R, Yu H, Schwarz J, Kaminski N, Eickelberg O (2012) Zyxin is a transforming growth factor-beta (TGF-beta)/Smad3 target gene that regulates lung cancer cell motility via integrin alpha5beta1. J Biol Chem 287:31393–31405. https://doi.org/10.1074/jbc.M112.357624

    Article  CAS  Google Scholar 

  49. Gust KM, McConkey DJ, Awrey S, Hegarty PK, Qing J, Bondaruk J, Ashkenazi A, Czerniak B, Dinney CP, Black PC (2013) Fibroblast growth factor receptor 3 is a rational therapeutic target in bladder cancer. Mol Cancer Ther 12:1245–1254. https://doi.org/10.1158/1535-7163.MCT-12-1150

    Article  CAS  Google Scholar 

  50. Petrylak DP, Tangen CM, Van Veldhuizen PJ Jr, Goodwin JW, Twardowski PW, Atkins JN, Kakhil SR, Lange MK, Mansukhani M, Crawford ED (2010) Results of the Southwest Oncology Group phase II evaluation (study S0031) of ZD1839 for advanced transitional cell carcinoma of the urothelium. BJU Int 105:317–321, doi: 10.1111/j.1464-410X.2009.08799.x

  51. Pruthi RS, Nielsen M, Heathcote S, Wallen EM, Rathmell WK, Godley P, Whang Y, Fielding J, Schultz H, Grigson G et al (2010) A phase II trial of neoadjuvant erlotinib in patients with muscle-invasive bladder cancer undergoing radical cystectomy: clinical and pathological results. BJU Int 106:349–354. https://doi.org/10.1111/j.1464-410X.2009.09101.x

    Article  CAS  Google Scholar 

  52. Wong YN, Litwin S, Vaughn D, Cohen S, Plimack ER, Lee J, Song W, Dabrow M, Brody M, Tuttle H et al (2012) Phase II trial of cetuximab with or without paclitaxel in patients with advanced urothelial tract carcinoma. J Clin Oncol 30:3545–3551. https://doi.org/10.1200/JCO.2012.41.9572

    Article  CAS  Google Scholar 

  53. Twardowski P, Stadler WM, Frankel P, Lara PN, Ruel C, Chatta G, Heath E, Quinn DI, Gandara DR (2010) Phase II study of Aflibercept (VEGF-Trap) in patients with recurrent or metastatic urothelial cancer, a California cancer consortium trial. Urology 76:923–926. https://doi.org/10.1016/j.urology.2010.04.025

    Article  Google Scholar 

  54. Sonpavde G, Jian W, Liu H, Wu MF, Shen SS, Lerner SP (2009) Sunitinib malate is active against human urothelial carcinoma and enhances the activity of cisplatin in a preclinical model. Urol Oncol 27:391–399. https://doi.org/10.1016/j.urolonc.2008.03.017

    Article  CAS  Google Scholar 

  55. Perez-Gracia JL, Loriot Y, Rosenberg JE, Powles T, Necchi A, Hussain SA, Morales-Barrera R, Retz MM, Niegisch G, Duran I et al (2017) Atezolizumab in platinum-treated locally advanced or metastatic urothelial carcinoma: outcomes by prior number of regimens. Eur Urol. https://doi.org/10.1016/j.eururo.2017.11.023

    Article  Google Scholar 

  56. Sharma P, Retz M, Siefker-Radtke A, Baron A, Necchi A, Bedke J, Plimack ER, Vaena D, Grimm MO, Bracarda S et al (2017) Nivolumab in metastatic urothelial carcinoma after platinum therapy (CheckMate 275): a multicentre, single-arm, phase 2 trial. Lancet Oncol 18:312–322. https://doi.org/10.1016/S1470-2045(17)30065-7

    Article  CAS  Google Scholar 

  57. Galsky MD, Wang H, Hahn NM, Twardowski P, Pal SK, Albany C, Fleming MT, Starodub A, Hauke RJ, Yu M et al (2018) Phase 2 trial of gemcitabine, cisplatin, plus ipilimumab in patients with metastatic urothelial cancer and impact of DNA damage response gene mutations on outcomes. Eur Urol 73:751–759. https://doi.org/10.1016/j.eururo.2017.12.001

    Article  CAS  Google Scholar 

  58. Jia D, Jolly MK, Kulkarni P, Levine H (2017) Phenotypic plasticity and cell fate decisions in cancer: insights from dynamical systems theory. Cancers (Basel) 9: doi: 10.3390/cancers9070070.

  59. Gupta PB, Onder TT, Jiang G, Tao K, Kuperwasser C, Weinberg RA, Lander ES (2009) Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell 138:645–659. https://doi.org/10.1016/j.cell.2009.06.034

    Article  CAS  Google Scholar 

  60. Mai TT, Hamai A, Hienzsch A, Caneque T, Muller S, Wicinski J, Cabaud O, Leroy C, David A, Acevedo V et al (2017) Salinomycin kills cancer stem cells by sequestering iron in lysosomes. Nat Chem 9:1025–1033. https://doi.org/10.1038/nchem.2778

    Article  CAS  Google Scholar 

  61. Bernardo MM, Kaplun A, Dzinic SH, Li X, Irish J, Mujagic A, Jakupovic B, Back JB, Van Buren E, Han X et al (2015) Maspin expression in prostate tumor cells averts stemness and stratifies drug sensitivity. Cancer Res 75:3970–3979. https://doi.org/10.1158/0008-5472.CAN-15-0234

    Article  CAS  Google Scholar 

  62. Sheng S, Margarida Bernardo M, Dzinic SH, Chen K, Heath EI, Sakr WA (2018) Tackling tumor heterogeneity and phenotypic plasticity in cancer precision medicine: our experience and a literature review. Cancer Metastasis Rev 37:655–663. https://doi.org/10.1007/s10555-018-9767-4

    Article  Google Scholar 

  63. Nieto MA, Huang RY, Jackson RA, Thiery JP (2016) Emt: 2016. Cell 166:21–45. https://doi.org/10.1016/j.cell.2016.06.028

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Department of Science and Technology (DST), Ramanujan Fellowship, for research support. PK is a recipient of the Ramanujan Fellowship awarded by Department of Science and Technology (DST), Government of India. BD is a recipient of INSPIRE Fellowship from Department of Science and Technology (DST), Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prashant Kumar.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deb, B., Kumar, P. Tumor Heterogeneity and Phenotypic Plasticity in Bladder Carcinoma. J Indian Inst Sci 100, 567–578 (2020). https://doi.org/10.1007/s41745-020-00183-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41745-020-00183-4

Keywords

Navigation