Skip to main content
Log in

Smart multi-tasking PDMS Nanocomposite sponges for microbial and oil contamination removal from water

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Here, we demonstrate multifunctional activity of a polydimethyl siloxane (PDMS) nanocomposite sponge for microbial mitigation and oil contaminant removal from water. Different concentrations of silver (Ag) nanoparticles have been studied for their anti-microbial activity along with activated Carbon (AC). Further, AC and Ag nanoparticles were incorporated inside the PDMS sponge using a unique non-aqueous in-situ reduction synthesis method to generate a nanocomposite sponge thus, rendering a hierarchical (i.e. micropores decorated with nanoparticles) texture on the sponge. The as-grown sponges were tested for their physico-chemical characteristics along with features including anti-microbial activity as well as absorption of floating-oil contaminants from water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Choi S-J, Kwon T-H, Im H, Moon DI, Baek DJ, Seol ML, Duarte JP, Choi YK (2011) A Polydimethylsiloxane (PDMS) sponge for the selective absorption of oil from water. ACS Appl Mater Interfaces 3:4552–4556. https://doi.org/10.1021/am201352w

    Article  CAS  PubMed  Google Scholar 

  2. Lu Y, Yuan W (2017) Superhydrophobic/Superoleophilic and reinforced ethyl cellulose sponges for oil/water separation: synergistic strategies of cross-linking, carbon nanotube composite, and Nanosilica modification. ACS Appl Mater Interfaces 9:29167–29176. https://doi.org/10.1021/acsami.7b09160

    Article  CAS  PubMed  Google Scholar 

  3. Lei Z, Zhang G, Deng Y, Wang C (2017) Thermoresponsive melamine sponges with switchable wettability by Interface-initiated atom transfer radical polymerization for oil/water separation. ACS Appl Mater Interfaces 9:8967–8974. https://doi.org/10.1021/acsami.6b14565

    Article  CAS  PubMed  Google Scholar 

  4. Mi H-YY, Jing X, Huang H-XX, Turng L-SS (2017) Controlling Superwettability by microstructure and surface energy manipulation on three-dimensional substrates for versatile gravity-driven oil/water separation. ACS Appl Mater Interfaces 9:37529–37535. https://doi.org/10.1021/acsami.7b10901

    Article  CAS  PubMed  Google Scholar 

  5. Dong X, Chen J, Ma Y, Wang J, Chan-Park MB, Liu X, Wang L, Huang W, Chen P (2012) Superhydrophobic and superoleophilic hybrid foam of graphene and carbon nanotube for selective removal of oils or organic solvents from the surface of water. Chem Commun 48:10660–10662. https://doi.org/10.1039/c2cc35844a

    Article  CAS  Google Scholar 

  6. Kim DH, Jung MC, Cho S-H, Kim SH, Kim HY, Lee HJ, Oh KH, Moon MW (2015) UV-responsive nano-sponge for oil absorption and desorption. Sci Rep 5:12908. https://doi.org/10.1038/srep12908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhang A, Chen M, Du C et al (2013) Poly(dimethylsiloxane) oil absorbent with a three-dimensionally interconnected porous structure and Swellable skeleton. ACS Appl Mater Interfaces 5:10201–10206. https://doi.org/10.1021/am4029203

    Article  CAS  PubMed  Google Scholar 

  8. Tran DNH, Kabiri S, Sim TR, Losic D (2015) Selective adsorption of oil–water mixtures using polydimethylsiloxane (PDMS)–graphene sponges. Environ Sci Water Res Technol 1:298–305. https://doi.org/10.1039/C5EW00035A

    Article  CAS  Google Scholar 

  9. Liu Y, Ma J, Wu T, Wang X, Huang G, Liu Y, Qiu H, Li Y, Wang W, Gao J (2013) Cost-effective reduced Graphene oxide-coated polyurethane sponge as a highly efficient and reusable oil-absorbent. ACS Appl Mater Interfaces 5:10018–10026. https://doi.org/10.1021/am4024252

    Article  CAS  PubMed  Google Scholar 

  10. Gupta RK, Dunderdale GJ, England MW, Hozumi A (2017) Oil/water separation techniques: a review of recent progresses and future directions. J Mater Chem A 5:16025–16058. https://doi.org/10.1039/C7TA02070H

    Article  CAS  Google Scholar 

  11. Wang M, Ma Y, Sun Y, Hong SY, Lee SK, Yoon B, Chen L, Ci L, Nam JD, Chen X, Suhr J (2017) Hierarchical porous chitosan sponges as robust and recyclable adsorbents for anionic dye adsorption. Sci Rep 7. https://doi.org/10.1038/s41598-017-18302-0

  12. He Y, Li J, Luo K, Li L, Chen J, Li J (2016) Engineering reduced Graphene oxide aerogel produced by effective γ-ray radiation-induced self-assembly and its application for continuous oil–water separation. Ind Eng Chem Res 55:3775–3781. https://doi.org/10.1021/acs.iecr.6b00073

    Article  CAS  Google Scholar 

  13. Yun J, Khan FA, Baik S (2017) Janus Graphene oxide sponges for high-purity fast separation of both water-in-oil and oil-in-water emulsions. ACS Appl Mater Interfaces 9:16694–16703. https://doi.org/10.1021/acsami.7b03322

    Article  CAS  PubMed  Google Scholar 

  14. Guo J, Wang J, Gao Y, Wang J, Chang W, Liao S, Qian ZM, Liu YX (2017) PH-responsive sponges fabricated by Ag-S ligands possess smart double-transformed Superhydrophilic-Superhydrophobic-Superhydrophilic wettability for oil-water separation. ACS Sustain Chem Eng 5:10772–10782. https://doi.org/10.1021/acssuschemeng.7b02734

    Article  CAS  Google Scholar 

  15. Peng H, Wang H, Wu J, Meng G, Wang Y, Shi Y, Liu Z, Guo X (2016) Preparation of Superhydrophobic magnetic cellulose sponge for removing oil from water. Ind Eng Chem Res 55:832–838. https://doi.org/10.1021/acs.iecr.5b03862

    Article  CAS  Google Scholar 

  16. Liu F, Ma M, Zang D, Gao Z, Wang C (2014) Fabrication of superhydrophobic/superoleophilic cotton for application in the field of water/oil separation. Carbohydr Polym 103:480–487. https://doi.org/10.1016/j.carbpol.2013.12.022

    Article  CAS  PubMed  Google Scholar 

  17. Zhang L, Xu L, Sun Y, Yang N (2016) Robust and durable Superhydrophobic polyurethane sponge for oil/water separation. Ind Eng Chem Res 55:11260–11268. https://doi.org/10.1021/acs.iecr.6b02897

    Article  CAS  Google Scholar 

  18. Cherukupally P, Acosta EJ, Hinestroza JP, Bilton AM, Park CB (2017) Acid–Base polymeric foams for the adsorption of micro-oil droplets from industrial effluents. Environ Sci Technol 51:8552–8560. https://doi.org/10.1021/acs.est.7b01255

    Article  CAS  PubMed  Google Scholar 

  19. Khosravi M, Azizian S (2015) Synthesis of a novel highly Oleophilic and highly hydrophobic sponge for rapid oil spill cleanup. ACS Appl Mater Interfaces 7:25326–25333. https://doi.org/10.1021/acsami.5b07504

    Article  CAS  PubMed  Google Scholar 

  20. Stolz A, Le Floch S, Reinert L et al (2016) Melamine-derived carbon sponges for oil-water separation. Carbon N Y 107:198–208. https://doi.org/10.1016/j.carbon.2016.05.059

    Article  CAS  Google Scholar 

  21. Wang Z, Jin P, Wang M, Wu G, Dong C, Wu A (2016) Biomass-derived porous carbonaceous aerogel as sorbent for oil-spill remediation. ACS Appl Mater Interfaces 8:32862–32868. https://doi.org/10.1021/acsami.6b11648

    Article  CAS  PubMed  Google Scholar 

  22. Lukhele L., Krause R, Mamba B, Momba M (2010) Synthesis of silver impregnated carbon nanotubes and cyclodextrin polyurethanes for the disinfection of water Water SA 36:. https://doi.org/10.4314/wsa.v36i4.58416

  23. Jo Y-K, Kim BH, Jung G (2009) Antifungal activity of silver ions and nanoparticles on Phytopathogenic Fungi. Plant Dis 93:1037–1043. https://doi.org/10.1094/PDIS-93-10-1037

    Article  CAS  PubMed  Google Scholar 

  24. Losasso C, Belluco S, Cibin V, Zavagnin P, Mičetić I, Gallocchio F, Zanella M, Bregoli L, Biancotto G, Ricci A (2014) Antibacterial activity of silver nanoparticles: sensitivity of different Salmonella serovars. Front Microbiol 5:1–10. https://doi.org/10.3389/fmicb.2014.00227

    Article  Google Scholar 

  25. Kim SH, Lee HS, Ryu DS et al (2011) Antibacterial activity of silver-nanoparticles against Staphylococcus aureus and Escherichia coli. Korean J Microbiol Biotechnol 39:77–85

    CAS  Google Scholar 

  26. Busscher HJ, Dijkstra RJB, Engels E, Langworthy DE, Collias DI, Bjorkquist DW, Mitchell MD, van der Mei HC (2006) Removal of two waterborne pathogenic bacterial strains by activated carbon particles prior to and after charge modification. Environ Sci Technol 40:6799–6804. https://doi.org/10.1021/es061282r

    Article  CAS  PubMed  Google Scholar 

  27. Burlingame GA, Suffet IH, Pipes WO (1986) Predominant bacterial genera in granular activated carbon water treatment systems. Can J Microbiol 32:226–230. https://doi.org/10.1139/m86-045

    Article  CAS  PubMed  Google Scholar 

  28. Rivera-Garza M, Olguín MT, García-Sosa I et al (2000) Silver supported on natural Mexican zeolite as an antibacterial material. Microporous Mesoporous Mater 39:431–444. https://doi.org/10.1016/S1387-1811(00)00217-1

    Article  CAS  Google Scholar 

  29. Matsumura Y, Yoshikata K, Kunisaki S-I, Tsuchido T (2003) Mode of bactericidal action of silver zeolite and its comparison with that of silver nitrate. Appl Environ Microbiol 69:4278–4281. https://doi.org/10.1128/AEM.69.7.4278-4281.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jain P, Pradeep T (2005) Potential of silver nanoparticle-coated polyurethane foam as an antibacterial water filter. Biotechnol Bioeng 90:59–63. https://doi.org/10.1002/bit.20368

    Article  CAS  PubMed  Google Scholar 

  31. Nguyen DD, Tai N-H, Lee S-B, Kuo W-S (2012) Superhydrophobic and superoleophilic properties of graphene-based sponges fabricated using a facile dip coating method. Energy Environ Sci 5:7908. https://doi.org/10.1039/c2ee21848h

    Article  CAS  Google Scholar 

  32. Goyal A, Kumar A, Patra PK, Mahendra S, Tabatabaei S, Alvarez PJJ, John G, Ajayan PM (2009) In situ synthesis of metal nanoparticle embedded free standing multifunctional PDMS films. Macromol Rapid Commun 30:1116–1122. https://doi.org/10.1002/marc.200900174

    Article  CAS  PubMed  Google Scholar 

  33. Zhang Q, Xu J-J, Liu Y, Chen H-Y (2008) In-situ synthesis of poly(dimethylsiloxane)–gold nanoparticles composite films and its application in microfluidic systems. Lab Chip 8:352–357. https://doi.org/10.1039/B716295M

    Article  CAS  PubMed  Google Scholar 

  34. Kuila BK, Garai A, Nandi AK (2007) Synthesis, optical, and electrical characterization of organically soluble silver nanoparticles and their poly(3-hexylthiophene) Nanocomposites: enhanced luminescence property in the Nanocomposite thin films. Chem Mater 19:5443–5452. https://doi.org/10.1021/cm7020214

    Article  CAS  Google Scholar 

  35. Sharma J, Chaki NK, Mandale AB, et al (2004) Controlled interlinking of au and Ag nanoclusters using 4-aminothiophenol as molecular interconnects. 272:145–152. https://doi.org/10.1016/j.jcis.2003.09.016

  36. Green M, O’Brien P (2000) A simple one phase preparation of organically capped gold nanocrystals. Chem Commun 183–184. https://doi.org/10.1039/a907532a

  37. Ramajo L, Parra R, Reboredo M, Castro M (2009) Preparation of amine coated silver nanoparticles using triethylenetetramine. J Chem Sci 121:83–87. https://doi.org/10.1007/s12039-009-0009-8

    Article  CAS  Google Scholar 

  38. Kumar KS, Vázquez G, Rodríguez A (2012) Microwave assisted synthesis and characterizations of decorated activated carbon. Int J Electrochem Sci 7:5484–5494

    Google Scholar 

  39. Qiao Z-A, Wang Y, Gao Y, Li H, Dai T, Liu Y, Huo Q (2010) Commercially activated carbon as the source for producing multicolor photoluminescent carbon dots by chemical oxidation. Chem Commun 46:8812. https://doi.org/10.1039/c0cc02724c

    Article  CAS  Google Scholar 

  40. Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for gram-negative bacteria. J Colloid Interface Sci 275:177–182. https://doi.org/10.1016/j.jcis.2004.02.012

    Article  CAS  PubMed  Google Scholar 

  41. Yoon K-Y, Hoon Byeon J, Park J-H, Hwang J (2007) Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles. Sci Total Environ 373:572–575. https://doi.org/10.1016/j.scitotenv.2006.11.007

    Article  CAS  PubMed  Google Scholar 

  42. Cho K-H, Park J-E, Osaka T, Park S-G (2005) The study of antimicrobial activity and preservative effects of nanosilver ingredient. Electrochim Acta 51:956–960. https://doi.org/10.1016/j.electacta.2005.04.071

    Article  CAS  Google Scholar 

  43. Byeon JH, Yoon KY, Park JH, Hwang J (2007) Characteristics of electroless copper-deposited activated carbon fibers for antibacterial action and adsorption–desorption of volatile organic compounds. Carbon N Y 45:2313–2316. https://doi.org/10.1016/j.carbon.2007.06.026

    Article  CAS  Google Scholar 

  44. Bakshi S, Pandey K, Bose S, Gunjan, Paul D, Nayak R (2019) Permanent superhydrophilic surface modification in microporous polydimethylsiloxane sponge for multi-functional applications. J Colloid Interface Sci 552:34–42. https://doi.org/10.1016/j.jcis.2019.05.028

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranu Nayak.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1.06 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandey, K., Bindra, H.S., Paul, D. et al. Smart multi-tasking PDMS Nanocomposite sponges for microbial and oil contamination removal from water. J Polym Res 27, 189 (2020). https://doi.org/10.1007/s10965-020-02109-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-02109-1

Keywords

Navigation