Skip to main content

Advertisement

Log in

Intrabladder PAC1 Receptor Antagonist, PACAP(6-38), Reduces Urinary Bladder Frequency and Pelvic Sensitivity in Mice Exposed to Repeated Variate Stress (RVS)

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Stress causes symptom exacerbation in functional disorders of the urinary bladder. However, the potential mediators and underlying mechanisms of stress effects on micturition reflex function are unknown. We have characterized PACAP (Adcyap1) and PAC1 receptor (Adcyap1r1) signaling in stress-induced urinary bladder dysfunction in mice. We determined PACAP and PAC1 transcripts and protein expressions in the urinary bladder and lumbosacral dorsal root ganglia (DRG) and spinal cord in repeated variate stress (RVS) or control mouse (handling only) groups. RVS in mice significantly (p ≤ 0.01) increased serum corticosterone and urinary bladder NGF content and decreased weight gain. PACAP and PAC1 mRNA and protein were differentially regulated in lower urinary tract tissues with changes observed in lumbosacral DRG and spinal cord but not in urinary bladder. RVS exposure in mice significantly (p ≤ 0.01) increased (2.5-fold) voiding frequency as determined using conscious cystometry. Intrabladder administration of the PAC1 receptor antagonist, PACAP(6-38) (300 nM), significantly (p ≤ 0.01) increased infused volume (1.5–2.7-fold) to elicit a micturition event and increased the intercontraction interval (i.e., decreased voiding frequency) in mice exposed to RVS and in control mice, but changes were smaller in magnitude in control mice. We also evaluated the effect of PAC1 blockade at the level of the urinary bladder on pelvic sensitivity in RVS or control mouse groups using von Frey filament testing. Intrabladder administration of PACAP(6-38) (300 nM) significantly (p ≤ 0.01) reduced pelvic sensitivity following RVS. PACAP/receptor signaling in the CNS and PNS contributes to increased voiding frequency and pelvic sensitivity following RVS and may represent a potential target for therapeutic intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Andersson KE (2004) Mechanisms of disease: central nervous system involvement in overactive bladder syndrome. Nat Clin Pract Urol 1(2):103–108. https://doi.org/10.1038/ncpuro0021

    Article  PubMed  Google Scholar 

  • Arimura A (1998) Perspectives on pituitary adenylate cyclase activating polypeptide (PACAP) in the neuroendocrine, endocrine, and nervous systems. Jpn J Physiol 48(5):301–331

    Article  CAS  PubMed  Google Scholar 

  • Arimura A, Somogyvari-Vigh A, Miyata A, Mizuno K, Coy DH, Kitada C (1991) Tissue distribution of PACAP as determined by RIA: highly abundant in the rat brain and testes. Endocrinology 129(5):2787–2789. https://doi.org/10.1210/endo-129-5-2787

    Article  CAS  PubMed  Google Scholar 

  • Arms L, Vizzard MA (2011) Neuropeptides in lower urinary tract function. Handb Exp Pharmacol 202:395–423. https://doi.org/10.1007/978-3-642-16499-6_19

    Article  CAS  Google Scholar 

  • Arms L, Girard BM, Vizzard MA (2010) Expression and function of CXCL12/CXCR4 in rat urinary bladder with cyclophosphamide-induced cystitis. Am J Physiol Ren Physiol 298(3):F589–F600. https://doi.org/10.1152/ajprenal.00628.2009

    Article  CAS  Google Scholar 

  • Beaudet MM, Braas KM, May V (1998) Pituitary adenylate cyclase activating polypeptide (PACAP) expression in sympathetic preganglionic projection neurons to the superior cervical ganglion. J Neurobiol 36(3):325–336

    Article  CAS  PubMed  Google Scholar 

  • Beaudet MM, Parsons RL, Braas KM, May V (2000) Mechanisms mediating pituitary adenylate cyclase-activating polypeptide depolarization of rat sympathetic neurons. J Neurosci 20(19):7353–7361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Birder L, Andersson KE (2013) Urothelial signaling. Physiol Rev 93(2):653–680. https://doi.org/10.1152/physrev.00030.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bjorling DE, Jacobsen HE, Blum JR, Shih A, Beckman M, Wang ZY, Uehling DT (2001) Intravesical Escherichia coli lipopolysaccharide stimulates an increase in bladder nerve growth factor. BJU Int 87(7):697–702

    Article  CAS  PubMed  Google Scholar 

  • Braas KM, May V (1996) Pituitary adenylate cyclase-activating polypeptides, PACAP-38 and PACAP-27, regulation of sympathetic neuron catecholamine, and neuropeptide Y expression through activation of type I PACAP/VIP receptor isoforms. Ann N Y Acad Sci 805:204–216 discussion 217–208

    Article  CAS  PubMed  Google Scholar 

  • Braas KM, May V (1999) Pituitary adenylate cyclase-activating polypeptides directly stimulate sympathetic neuron neuropeptide Y release through PAC(1) receptor isoform activation of specific intracellular signaling pathways. J Biol Chem 274(39):27702–27710

    Article  CAS  PubMed  Google Scholar 

  • Braas KM, May V, Harakall SA, Hardwick JC, Parsons RL (1998) Pituitary adenylate cyclase-activating polypeptide expression and modulation of neuronal excitability in guinea pig cardiac ganglia. J Neurosci 18(23):9766–9779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braas KM, May V, Zvara P, Nausch B, Kliment J, Dunleavy JD, Nelson MT, Vizzard MA (2006) Role for pituitary adenylate cyclase activating polypeptide in cystitis-induced plasticity of micturition reflexes. Am J Physiol Regul Integr Comp Physiol 290(4):R951–R962. https://doi.org/10.1152/ajpregu.00734.2005

    Article  CAS  PubMed  Google Scholar 

  • Brandenburg CA, May V, Braas KM (1997) Identification of endogenous sympathetic neuron pituitary adenylate cyclase-activating polypeptide (PACAP): depolarization regulates production and secretion through induction of multiple propeptide transcripts. J Neurosci 17(11):4045–4055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheppudira BP, Girard BM, Malley SE, Schutz KC, May V, Vizzard MA (2008) Upregulation of vascular endothelial growth factor isoform VEGF-164 and receptors (VEGFR-2, Npn-1, and Npn-2) in rats with cyclophosphamide-induced cystitis. Am J Physiol Ren Physiol 295(3):F826–F836. https://doi.org/10.1152/ajprenal.90305.2008

    Article  CAS  Google Scholar 

  • Cheppudira BP, Girard BM, Malley SE, Dattilio A, Schutz KC, May V, Vizzard MA (2009) Involvement of JAK-STAT signaling/function after cyclophosphamide-induced bladder inflammation in female rats. Am J Physiol Ren Physiol 297(4):F1038–F1044. https://doi.org/10.1152/ajprenal.00110.2009

    Article  CAS  Google Scholar 

  • Condro MC, Matynia A, Foster NN, Ago Y, Rajbhandari AK, Van C, Jayaram B, Parikh S, Diep AL, Nguyen E, May V, Dong HW, Waschek JA (2016) High-resolution characterization of a PACAP-EGFP transgenic mouse model for mapping PACAP-expressing neurons. J Comp Neurol 524(18):3827–3848. https://doi.org/10.1002/cne.24035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corrow K, Girard BM, Vizzard MA (2010) Expression and response of acid-sensing ion channels in urinary bladder to cyclophosphamide-induced cystitis. Am J Physiol Ren Physiol 298(5):F1130–F1139. https://doi.org/10.1152/ajprenal.00618.2009

    Article  CAS  Google Scholar 

  • Dore R, Iemolo A, Smith KL, Wang X, Cottone P, Sabino V (2013) CRF mediates the anxiogenic and anti-rewarding, but not the anorectic effects of PACAP. Neuropsychopharmacology 38(11):2160–2169. https://doi.org/10.1038/npp.2013.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elbadawi A (1996) Functional anatomy of the organs of micturition. Urol Clin N Am 23(2):177–210

    Article  CAS  Google Scholar 

  • Ercan F, Oktay S, Erin N (2001) Role of afferent neurons in stress induced degenerative changes of the bladder. J Urol 165(1):235–239. https://doi.org/10.1097/00005392-200101000-00070

    Article  CAS  PubMed  Google Scholar 

  • Fahrenkrug J, Hannibal J (1998) Pituitary adenylate cyclase activating polypeptide immunoreactivity in capsaicin-sensitive nerve fibres supplying the rat urinary tract. Neuroscience 83(4):1261–1272

    Article  CAS  PubMed  Google Scholar 

  • FitzGerald LZ, Kehoe P, Sinha K (2009) Hypothalamic-pituitary-adrenal axis dysregulation in women with irritable bowel syndrome in response to acute physical stress. West J Nurs Res 31(7):818–836. https://doi.org/10.1177/0193945909339320

    Article  PubMed  Google Scholar 

  • Fuentes IM, Christianson JA (2018) The influence of early life experience on visceral pain. Front Syst Neurosci 12:2. https://doi.org/10.3389/fnsys.2018.00002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghatei MA, Takahashi K, Suzuki Y, Gardiner J, Jones PM, Bloom SR (1993) Distribution, molecular characterization of pituitary adenylate cyclase-activating polypeptide and its precursor encoding messenger RNA in human and rat tissues. J Endocrinol 136(1):159–166

    Article  CAS  PubMed  Google Scholar 

  • Girard BM, Wolf-Johnston A, Braas KM, Birder LA, May V, Vizzard MA (2008) PACAP-mediated ATP release from rat urothelium and regulation of PACAP/VIP and receptor mRNA in micturition pathways after cyclophosphamide (CYP)-induced cystitis. J Mol Neurosci 36(1–3):310–320. https://doi.org/10.1007/s12031-008-9104-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Girard BM, Malley SE, Braas KM, May V, Vizzard MA (2010) PACAP/VIP and receptor characterization in micturition pathways in mice with overexpression of NGF in urothelium. J Mol Neurosci 42(3):378–389. https://doi.org/10.1007/s12031-010-9384-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Girard BM, Malley SE, Vizzard MA (2011) Neurotrophin/receptor expression in urinary bladder of mice with overexpression of NGF in urothelium. Am J Physiol Ren Physiol 300(2):F345–F355. https://doi.org/10.1152/ajprenal.00515.2010

    Article  CAS  Google Scholar 

  • Girard BM, Tompkins JD, Parsons RL, May V, Vizzard MA (2012) Effects of CYP-induced cystitis on PACAP/VIP and receptor expression in micturition pathways and bladder function in mice with overexpression of NGF in urothelium. J Mol Neurosci 48(3):730–743. https://doi.org/10.1007/s12031-012-9834-1

    Article  CAS  PubMed  Google Scholar 

  • Girard BM, Merrill L, Malley S, Vizzard MA (2013) Increased TRPV4 expression in urinary bladder and lumbosacral dorsal root ganglia in mice with chronic overexpression of NGF in urothelium. J Mol Neurosci 51(2):602–614. https://doi.org/10.1007/s12031-013-0033-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Girard BM, Malley SE, Mathews MM, May V, Vizzard MA (2016) Intravesical PAC1 receptor antagonist, PACAP(6-38), reduces urinary bladder frequency and pelvic sensitivity in NGF-OE mice. J Mol Neurosci 59(2):290–299. https://doi.org/10.1007/s12031-016-0764-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Girard BM, Tooke K, Vizzard MA (2017) PACAP/receptor system in urinary bladder dysfunction and pelvic pain following urinary bladder inflammation or stress. Front Syst Neurosci 11:90. https://doi.org/10.3389/fnsys.2017.00090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Girard BM, Campbell SE, Perkins M, Hsiang H, Tooke K, Drescher C, Hennig GW, Heppner TJ, Nelson MT, Vizzard MA (2019) TRPV4 blockade reduces voiding frequency, ATP release, and pelvic sensitivity in mice with chronic urothelial overexpression of NGF. Am J Physiol Ren Physiol 317(6):F1695–F1706. https://doi.org/10.1152/ajprenal.00147.2019

    Article  CAS  Google Scholar 

  • Gonzalez EJ, Girard BM, Vizzard MA (2013) Expression and function of transforming growth factor-beta isoforms and cognate receptors in the rat urinary bladder following cyclophosphamide-induced cystitis. Am J Physiol Ren Physiol 305(9):F1265–F1276. https://doi.org/10.1152/ajprenal.00042.2013

    Article  CAS  Google Scholar 

  • Gonzalez EJ, Girard B, Braas KM, May V, Vizzard MA (2016) Neuroplasticity of PACAP expression and function in micturition reflex pathways. In: Reglodi D, Tamas A (eds) Pituitary adenylate cyclase activating polypeptide — PACAP. Springer International Publishing, Cham, pp 313–334. https://doi.org/10.1007/978-3-319-35135-3_19

    Chapter  Google Scholar 

  • Grundy L, Caldwell A, Brierley SM (2018) Mechanisms underlying overactive bladder and interstitial cystitis/painful bladder syndrome. Front Neurosci 12:931. https://doi.org/10.3389/fnins.2018.00931

    Article  PubMed  PubMed Central  Google Scholar 

  • Guerios SD, Wang ZY, Boldon K, Bushman W, Bjorling DE (2008) Blockade of NGF and trk receptors inhibits increased peripheral mechanical sensitivity accompanying cystitis in rats. Am J Physiol Regul Integr Comp Physiol 295(1):R111–R122. https://doi.org/10.1152/ajpregu.00728.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo M, Chang P, Hauke E, Girard BM, Tooke K, Ojala J, Malley SM, Hsiang H, Vizzard MA (2018) Expression and function of chemokines CXCL9-11 in micturition pathways in cyclophosphamide (CYP)-induced cystitis and somatic sensitivity in mice. Front Syst Neurosci 12:9. https://doi.org/10.3389/fnsys.2018.00009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hammack SE, Cheung J, Rhodes KM, Schutz KC, Falls WA, Braas KM, May V (2009) Chronic stress increases pituitary adenylate cyclase-activating peptide (PACAP) and brain-derived neurotrophic factor (BDNF) mRNA expression in the bed nucleus of the stria terminalis (BNST): roles for PACAP in anxiety-like behavior. Psychoneuroendocrinology 34(6):833–843. https://doi.org/10.1016/j.psyneuen.2008.12.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanno PM, Sant GR (2001) Clinical highlights of the National Institute of Diabetes and Digestive and Kidney Diseases/Interstitial Cystitis Association Scientific Conference on Interstitial Cystitis. Urology 57(6 Suppl 1):2–6

    Article  CAS  PubMed  Google Scholar 

  • Herrera GM, Braas KM, May V, Vizzard MA (2006) PACAP enhances mouse urinary bladder contractility and is upregulated in micturition reflex pathways after cystitis. Ann N Y Acad Sci 1070:330–336. https://doi.org/10.1196/annals.1317.040

    Article  CAS  PubMed  Google Scholar 

  • Holgert H, Holmberg K, Hannibal J, Fahrenkrug J, Brimijoin S, Hartman BK, Hokfelt T (1996) PACAP in the adrenal gland--relationship with choline acetyltransferase, enkephalin and chromaffin cells and effects of immunological sympathectomy. Neuroreport 8(1):297–301

    Article  CAS  PubMed  Google Scholar 

  • Jensen DG, Studeny S, May V, Waschek J, Vizzard MA (2008) Expression of phosphorylated cAMP response element binding protein (p-CREB) in bladder afferent pathways in VIP−/− mice with cyclophosphamide (CYP)-induced cystitis. J Mol Neurosci 36(1–3):299–309. https://doi.org/10.1007/s12031-008-9045-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jongsma Wallin H, Danielsen N, Johnston JM, Gratto KA, Karchewski LA, Verge VM (2001) Exogenous NT-3 and NGF differentially modulate PACAP expression in adult sensory neurons, suggesting distinct roles in injury and inflammation. Eur J Neurosci 14(2):267–282

    Article  CAS  PubMed  Google Scholar 

  • Jongsma Wallin H, Pettersson LM, Verge VM, Danielsen N (2003) Effect of anti-nerve growth factor treatment on pituitary adenylate cyclase activating polypeptide expression in adult sensory neurons exposed to adjuvant induced inflammation. Neuroscience 120(2):325–331

    Article  CAS  PubMed  Google Scholar 

  • King SB, Toufexis DJ, Hammack SE (2017) Pituitary adenylate cyclase activating polypeptide (PACAP), stress, and sex hormones. Stress:1–11. https://doi.org/10.1080/10253890.2017.1336535

  • Klimaschewski L, Hauser C, Heym C (1996) PACAP immunoreactivity in the rat superior cervical ganglion in comparison to VIP. Neuroreport 7(15–17):2797–2801

    Article  CAS  PubMed  Google Scholar 

  • Klinger MB, Vizzard MA (2008) Role of p75NTR in female rat urinary bladder with cyclophosphamide-induced cystitis. Am J Physiol Ren Physiol 295(6):F1778–F1789. https://doi.org/10.1152/ajprenal.90501.2008

    Article  CAS  Google Scholar 

  • Koves K, Arimura A, Somogyvari-Vigh A, Vigh S, Miller J (1990) Immunohistochemical demonstration of a novel hypothalamic peptide, pituitary adenylate cyclase-activating polypeptide, in the ovine hypothalamus. Endocrinology 127(1):264–271. https://doi.org/10.1210/endo-127-1-264

    Article  CAS  PubMed  Google Scholar 

  • Koves K, Arimura A, Gorcs TG, Somogyvari-Vigh A (1991) Comparative distribution of immunoreactive pituitary adenylate cyclase activating polypeptide and vasoactive intestinal polypeptide in rat forebrain. Neuroendocrinology 54(2):159–169

    Article  CAS  PubMed  Google Scholar 

  • Larsen JO, Hannibal J, Knudsen SM, Fahrenkrug J (1997) Expression of pituitary adenylate cyclase-activating polypeptide (PACAP) in the mesencephalic trigeminal nucleus of the rat after transsection of the masseteric nerve. Brain Res Mol Brain Res 46(1–2):109–117

    Article  CAS  PubMed  Google Scholar 

  • Lezak KR, Roelke E, Harris OM, Choi I, Edwards S, Gick N, Cocchiaro G, Missig G, Roman CW, Braas KM, Toufexis DJ, May V, Hammack SE (2014a) Pituitary adenylate cyclase-activating polypeptide (PACAP) in the bed nucleus of the stria terminalis (BNST) increases corticosterone in male and female rats. Psychoneuroendocrinology 45:11–20. https://doi.org/10.1016/j.psyneuen.2014.03.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lezak KR, Roman CW, Braas KM, Schutz KC, Falls WA, Schulkin J, May V, Hammack SE (2014b) Regulation of bed nucleus of the stria terminalis PACAP expression by stress and corticosterone. J Mol Neurosci 54(3):477–484. https://doi.org/10.1007/s12031-014-0269-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Longden TA, Dabertrand F, Hill-Eubanks DC, Hammack SE, Nelson MT (2014a) Stress-induced glucocorticoid signaling remodels neurovascular coupling through impairment of cerebrovascular inwardly rectifying K+ channel function. Proc Natl Acad Sci U S A 111(20):7462–7467. https://doi.org/10.1073/pnas.1401811111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Longden TA, Hammack SE, Nelson MT (2014b) Channeling stress: inwardly-rectifying K+ channels in stress and disease. Channels (Austin) 8(4):296–297

    Article  CAS  PubMed Central  Google Scholar 

  • Lovallo WR (2013) Early life adversity reduces stress reactivity and enhances impulsive behavior: implications for health behaviors. Int J Psychophysiol 90(1):8–16. https://doi.org/10.1016/j.ijpsycho.2012.10.006

    Article  PubMed  Google Scholar 

  • Lutgendorf SK, Kreder KJ, Rothrock NE, Ratliff TL, Zimmerman B (2000) Stress and symptomatology in patients with interstitial cystitis: a laboratory stress model. J Urol 164(4):1265–1269

    Article  CAS  PubMed  Google Scholar 

  • Mahon PB, Zandi PP, Potash JB, Nestadt G, Wand GS (2013) Genetic association of FKBP5 and CRHR1 with cortisol response to acute psychosocial stress in healthy adults. Psychopharmacology 227(2):231–241. https://doi.org/10.1007/s00213-012-2956-x

    Article  CAS  PubMed  Google Scholar 

  • Marshall RD, Garakani A (2002) Psychobiology of the acute stress response and its relationship to the psychobiology of post-traumatic stress disorder. Psychiatr Clin North Am 25(2):385–395

    Article  PubMed  Google Scholar 

  • Masuo Y, Suzuki N, Matsumoto H, Tokito F, Matsumoto Y, Tsuda M, Fujino M (1993) Regional distribution of pituitary adenylate cyclase activating polypeptide (PACAP) in the rat central nervous system as determined by sandwich-enzyme immunoassay. Brain Res 602(1):57–63

    Article  CAS  PubMed  Google Scholar 

  • May V, Braas KM (1995) Pituitary adenylate cyclase-activating polypeptide (PACAP) regulation of sympathetic neuron neuropeptide Y and catecholamine expression. J Neurochem 65(3):978–987

    Article  CAS  PubMed  Google Scholar 

  • May V, Vizzard MA (2010) Bladder dysfunction and altered somatic sensitivity in PACAP−/− mice. J Urol 183(2):772–779. https://doi.org/10.1016/j.juro.2009.09.077

    Article  PubMed  PubMed Central  Google Scholar 

  • May V, Beaudet MM, Parsons RL, Hardwick JC, Gauthier EA, Durda JP, Braas KM (1998) Mechanisms of pituitary adenylate cyclase activating polypeptide (PACAP)-induced depolarization of sympathetic superior cervical ganglion (SCG) neurons. Ann N Y Acad Sci 865:164–175

    Article  CAS  PubMed  Google Scholar 

  • May V, Mathews ME, Malley S., Girard BM, Braas KM, Waschek JA, Vizzard MA (2015) Pituitary adenylate cyclase-activating polypeptide (PACAP) expression in lower urinary tract pathways (LUT) with cyclophosphamide (CYP)-induced cystitis in PACAP promoter-dependent EGFP BAC transgenic mice. 12th International Symposium on VIP, PACAP and Related Peptdies

  • May V, Mathews ME, Torres NS, McQuesten J, Chang PL, Hauke E, Ojala J, Malley S, Girard BM, Braas KM, Waschek JA, Vizzard MA (2017a) Pituitary adenylate cyclase-activating polypeptide (PACAP) expression in lower urinary tract pathways (LUT) Following cyclophosphamide (CYP)-induced cystitis in PACAP promoter-dependent EGFP BAC transgenic mice. 13th International Symposium on VIP, PACAP and Related Peptdies

  • May V, Mathews ME, Torres NS, McQuesten J, Chang PL, Hauke E, Ojala J, Malley S, Girard BM, Braas KM, Waschek JA, Vizzard MA (2017b) Role of PACAP/PAC1 signaling in micturition reflexes and somatic sensitivity following repeated variate stress (RVS) in PACAP promoter-dependent EGFP BAC transgenic mice. 12th International Symposium on VIP, PACAP and Related Peptdies

  • May V, Ojala J, Tooke K, Perkins M, Hsiang H, Campbell SE, Girard BM, Braas KM, Waschek JA, Vizzard MA (2019) PACAP/Receptor Mechanisms Contribute To Micturition Dysfunction With Repeated Variate Stress (RVS) In Mice PACAP/receptor mechanisms contribute to micturition dysfunction with repeated variate stress (RVS) in mice. Akira Arimura Memorial VIP/PACAP and Related Peptides Symposium: 30 years after PACAP Discovery

  • Merrill L, Vizzard MA (2014) Intravesical TRPV4 blockade reduces repeated variate stress-induced bladder dysfunction by increasing bladder capacity and decreasing voiding frequency in male rats. Am J Physiol Regul Integr Comp Physiol 307(4):R471–R480. https://doi.org/10.1152/ajpregu.00008.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merrill L, Malley S, Vizzard MA (2013) Repeated variate stress in male rats induces increased voiding frequency, somatic sensitivity, and urinary bladder nerve growth factor expression. Am J Physiol Regul Integr Comp Physiol 305(2):R147–R156. https://doi.org/10.1152/ajpregu.00089.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mihaljevic M, Zeljic K, Soldatovic I, Andric S, Mirjanic T, Richards A, Mantripragada K, Pekmezovic T, Novakovic I, Maric NP (2016) The emerging role of the FKBP5 gene polymorphisms in vulnerability-stress model of schizophrenia: further evidence from a Serbian population. Eur Arch Psychiatry Clin Neurosci. https://doi.org/10.1007/s00406-016-0720-7

  • Missig G, Roman CW, Vizzard MA, Braas KM, Hammack SE, May V (2014) Parabrachial nucleus (PBn) pituitary adenylate cyclase activating polypeptide (PACAP) signaling in the amygdala: implication for the sensory and behavioral effects of pain. Neuropharmacology 86:38–48. https://doi.org/10.1016/j.neuropharm.2014.06.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moller K, Reimer M, Ekblad E, Hannibal J, Fahrenkrug J, Kanje M, Sundler F (1997a) The effects of axotomy and preganglionic denervation on the expression of pituitary adenylate cyclase activating peptide (PACAP), galanin and PACAP type 1 receptors in the rat superior cervical ganglion. Brain Res 775(1–2):166–182

    Article  CAS  PubMed  Google Scholar 

  • Moller K, Reimer M, Hannibal J, Fahrenkrug J, Sundler F, Kanje M (1997b) Pituitary adenylate cyclase-activating peptide (PACAP) and PACAP type 1 receptor expression in regenerating adult mouse and rat superior cervical ganglia in vitro. Brain Res 775(1–2):156–165

    Article  CAS  PubMed  Google Scholar 

  • Nazif O, Teichman JM, Gebhart GF (2007) Neural upregulation in interstitial cystitis. Urology 69(4 Suppl):24–33. https://doi.org/10.1016/j.urology.2006.08.1108

    Article  PubMed  Google Scholar 

  • Nickel JC, Stephens A, Landis JR, Mullins C, van Bokhoven A, Lucia MS, Ehrlich GD, Network MR (2016) Assessment of the lower urinary tract microbiota during symptom flare in women with urologic chronic pelvic pain syndrome: a MAPP Network Study. J Urol 195(2):356–362. https://doi.org/10.1016/j.juro.2015.09.075

    Article  PubMed  Google Scholar 

  • Nogi H, Hashimoto H, Hagihara N, Shimada S, Yamamoto K, Matsuda T, Tohyama M, Baba A (1997) Distribution of mRNAs for pituitary adenylate cyclase-activating polypeptide (PACAP), PACAP receptor, vasoactive intestinal polypeptide (VIP), and VIP receptors in the rat superior cervical ganglion. Neurosci Lett 227(1):37–40

    Article  CAS  PubMed  Google Scholar 

  • Ojala J, Tooke K, Hsiang H, Girard BM, May V, Vizzard MA (2018) PACAP/PAC1 expression and function in micturition pathways. J Mol Neurosci. https://doi.org/10.1007/s12031-018-1170-7

  • Pierce AN, Christianson JA (2015) Stress and chronic pelvic pain. Prog Mol Biol Transl Sci 131:509–535. https://doi.org/10.1016/bs.pmbts.2014.11.009

    Article  PubMed  Google Scholar 

  • Portbury AL, McConalogue K, Furness JB, Young HM (1995) Distribution of pituitary adenylyl cyclase activating peptide (PACAP) immunoreactivity in neurons of the guinea-pig digestive tract and their projections in the ileum and colon. Cell Tissue Res 279(2):385–392

    Article  CAS  PubMed  Google Scholar 

  • Roman CW, Lezak KR, Hartsock MJ, Falls WA, Braas KM, Howard AB, Hammack SE, May V (2014) PAC1 receptor antagonism in the bed nucleus of the stria terminalis (BNST) attenuates the endocrine and behavioral consequences of chronic stress. Psychoneuroendocrinology 47:151–165. https://doi.org/10.1016/j.psyneuen.2014.05.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rothrock NE, Lutgendorf SK, Kreder KJ, Ratliff T, Zimmerman B (2001a) Stress and symptoms in patients with interstitial cystitis: a life stress model. Urology 57(3):422–427

    Article  CAS  PubMed  Google Scholar 

  • Rothrock NE, Lutgendorf SK, Kreder KJ, Ratliff TL, Zimmerman B (2001b) Daily stress and symptom exacerbation in interstitial cystitis patients. Urology 57(6 Suppl 1):122

    Article  CAS  PubMed  Google Scholar 

  • Schnegelsberg B, Sun TT, Cain G, Bhattacharya A, Nunn PA, Ford AP, Vizzard MA, Cockayne DA (2010) Overexpression of NGF in mouse urothelium leads to neuronal hyperinnervation, pelvic sensitivity, and changes in urinary bladder function. Am J Physiol Regul Integr Comp Physiol 298(3):R534–R547. https://doi.org/10.1152/ajpregu.00367.2009

    Article  CAS  PubMed  Google Scholar 

  • Shiotani Y, Kimura S, Ohshige Y, Yanaihara C, Yanaihara N (1995) Immunohistochemical localization of pituitary adenylate cyclase-activating polypeptide (PACAP) in the adrenal medulla of the rat. Peptides 16(6):1045–1050

    Article  CAS  PubMed  Google Scholar 

  • Studeny S, Cheppudira BP, Meyers S, Balestreire EM, Apodaca G, Birder LA, Braas KM, Waschek JA, May V, Vizzard MA (2008) Urinary bladder function and somatic sensitivity in vasoactive intestinal polypeptide (VIP)−/− mice. J Mol Neurosci 36(1–3):175–187. https://doi.org/10.1007/s12031-008-9100-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sundler F, Ekblad E, Hannibal J, Moller K, Zhang YZ, Mulder H, Elsas T, Grunditz T, Danielsen N, Fahrenkrug J, Uddman R (1996) Pituitary adenylate cyclase-activating peptide in sensory and autonomic ganglia: localization and regulation. Ann N Y Acad Sci 805:410–426 discussion 427–418

    Article  CAS  PubMed  Google Scholar 

  • Sutcliffe S, Colditz GA, Goodman MS, Pakpahan R, Vetter J, Ness TJ, Andriole GL, Lai HH (2014) Urological chronic pelvic pain syndrome symptom flares: characterisation of the full range of flares at two sites in the Multidisciplinary Approach to the Study of Chronic Pelvic Pain (MAPP) Research Network. BJU Int 114(6):916–925. https://doi.org/10.1111/bju.12778

    Article  PubMed  PubMed Central  Google Scholar 

  • Sutcliffe S, Jemielita T, Lai HH, Andriole GL, Bradley CS, Clemens JQ, Gallop R, Hooton TM, Kreder KJ, Krieger JN, Kusek JW, Labus J, Lucia MS, Mackey S, Naliboff BD, Robinson NA, Rodriguez LV, Stephens-Shields A, van Bokhoven A, Wolin KY, Yan Y, Yang CC, Landis JR, Colditz GA, Network MR (2018) A case-crossover study of urological chronic pelvic pain syndrome flare triggers in the MAPP Research Network. J Urol 199(5):1245–1251. https://doi.org/10.1016/j.juro.2017.12.050

    Article  PubMed  Google Scholar 

  • Tatsuno I, Somogyvari-Vigh A, Arimura A (1994) Developmental changes of pituitary adenylate cyclase activating polypeptide (PACAP) and its receptor in the rat brain. Peptides 15(1):55–60

    Article  CAS  PubMed  Google Scholar 

  • Taylor SE (2010) Mechanisms linking early life stress to adult health outcomes. Proc Natl Acad Sci U S A 107(19):8507–8512. https://doi.org/10.1073/pnas.1003890107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turner-Cobb JM (2005) Psychological and stress hormone correlates in early life: a key to HPA-axis dysregulation and normalisation. Stress 8(1):47–57. https://doi.org/10.1080/10253890500095200

    Article  CAS  PubMed  Google Scholar 

  • Vizzard MA (2000a) Alterations in spinal cord Fos protein expression induced by bladder stimulation following cystitis. Am J Physiol Regul Integr Comp Physiol 278(4):R1027–R1039

    Article  CAS  PubMed  Google Scholar 

  • Vizzard MA (2000b) Changes in urinary bladder neurotrophic factor mRNA and NGF protein following urinary bladder dysfunction. Exp Neurol 161(1):273–284. https://doi.org/10.1006/exnr.1999.7254

    Article  CAS  PubMed  Google Scholar 

  • Vizzard MA (2000c) Up-regulation of pituitary adenylate cyclase-activating polypeptide in urinary bladder pathways after chronic cystitis. J Comp Neurol 420(3):335–348

    Article  CAS  PubMed  Google Scholar 

  • Westropp JL, Buffington CA (2002) In vivo models of interstitial cystitis. J Urol 167(2 Pt 1):694–702

    Article  PubMed  Google Scholar 

  • Zhang Q, Shi TJ, Ji RR, Zhang YZ, Sundler F, Hannibal J, Fahrenkrug J, Hokfelt T (1995) Expression of pituitary adenylate cyclase-activating polypeptide in dorsal root ganglia following axotomy: time course and coexistence. Brain Res 705(1–2):149–158

    Article  CAS  PubMed  Google Scholar 

  • Zhang YZ, Hannibal J, Zhao Q, Moller K, Danielsen N, Fahrenkrug J, Sundler F (1996) Pituitary adenylate cyclase activating peptide expression in the rat dorsal root ganglia: up-regulation after peripheral nerve injury. Neuroscience 74(4):1099–1110

    Article  CAS  PubMed  Google Scholar 

  • Zvara P, Vizzard MA (2007) Exogenous overexpression of nerve growth factor in the urinary bladder produces bladder overactivity and altered micturition circuitry in the lumbosacral spinal cord. BMC Physiol 7:9. https://doi.org/10.1186/1472-6793-7-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. James A. Waschek for his generous gift of transgenic PACAP-EGFP mice breeding pairs. The authors also gratefully acknowledge the research efforts of summer undergraduate research students, some of whom were supported by a NINDS Summer Research Experience in Neuroscience for Undergraduates (R25 NS090623) through the Summer Undergraduate Neuroscience Fellowship Program at UVM. Student researchers included William (Trey) Walker, Michelle Hernandez, Hina Rattu, Neysharie Sánchez-Torres, Jenna McQuesten, Morgan Mathews, Diana Grinberg, Phat (Tony) Chan, Eric Hauke, and Gabrielle Krumgalz.

Funding

This work was funded by National Institutes of Health (NIH) grants DK051369 (MAV), DK060481 (MAV), DK065989 (MAV), and DK120108 (MAV). This publication was also supported by grants from the National Center for Research Resources (5 P30 RR 032135) and the National Institute of General Medical Sciences (8 P30 GM 103498) from the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margaret A. Vizzard.

Ethics declarations

The UVM Institutional Animal Care and Use Committee approved all experimental protocols involving animal (IACUC #08-085, #13-030, #X9-020). The UVM Office of Animal Care Management oversaw all animal use in accordance with AAALAC and NIH guidelines.

Conflict of Interest

The authors declare that they have no conflict of interest.

Disclaimer

The funding entity, NIH, had no role in the studies described including the following: design, data collection and analysis of studies performed in the Vizzard laboratory, decision to publish, or the preparation of the manuscript. The contents are solely the responsibility of the authors and do not necessarily represent the official views of NIH.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Girard, B.M., Campbell, S.E., Beca, K.I. et al. Intrabladder PAC1 Receptor Antagonist, PACAP(6-38), Reduces Urinary Bladder Frequency and Pelvic Sensitivity in Mice Exposed to Repeated Variate Stress (RVS). J Mol Neurosci 71, 1575–1588 (2021). https://doi.org/10.1007/s12031-020-01649-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-020-01649-x

Keywords

Navigation