Skip to main content
Log in

An adaptive design approach for defects distribution modeling in materials from first-principle calculations

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Designing and understanding the mechanism of non-stoichiometric materials with enhanced properties is challenging, both experimentally and even computationally, due to the large number of chemical spaces and their distributions through the material. In the current work, it is proposed a Machine Learning approach coupled with the Efficient Global Optimization (EGO) method—an Adaptive Design (AD)—to model local defects in materials from first-principle calculations. Our method takes into account the smallest sample set as possible, envisioning the material defect structure relationship with target properties for new insights. As an example, the AD framework allows us to study the stability and the structure of the modified goethite (Fe0.875Al0.125OOH) by considering a proper defect distribution, from first-principle calculations. The chemical space search for the modified goethite was evaluated by starting from different sizes and configurations of the samples as well as different surrogate models (ANN and Gaussian Process; GP), acquisition functions, and descriptors. Our results show that the same local solution of several defect arrangements in Fe0.875Al0.125OOH is found regardless of the initial sample and regression model. This indicates the efficiency of our search method. We also discuss the role of the descriptors in the accelerated global search for defects in material modeling. We conclude that the AD method applied in material defects is a successful approach in automating the search within huge chemical spaces from first-principle calculations by considering small samples. This method can be applied to mechanistic elucidation of non-stoichiometric materials, solid solutions, alloys, and Schottky and Frenkel defects, essential for material design and discovery.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1-
Fig. 2-
Fig. 3-
Fig. 4
Fig. 5
Fig. 6-
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ulissi ZW, Tang MT, Xiao J, Liu X, Torelli DA, Karamad M, Cummins K, Hahn C, Lewis NS, Jaramillo TF, Chan K, Nørskov JK (2017) Machine-learning methods enable exhaustive searches for active bimetallic facets and reveal active site motifs for CO2 reduction. ACS Catal 7(10):6600–6608. https://doi.org/10.1021/acscatal.7b01648

    Article  CAS  Google Scholar 

  2. Freeze JG, Kelly HR, Batista VS (2019) Search for catalysts by inverse design: artificial intelligence, mountain climbers, and alchemists. Chem Rev 119(11):6595–6612. https://doi.org/10.1021/acs.chemrev.8b00759

    Article  CAS  PubMed  Google Scholar 

  3. Chang C-K, Kataria S, Kuo C-C, Ganguly A, Wang B-Y, Hwang J-Y, Huang K-J, Yang W-H, Wang S-B, Chuang C-H, Chen M, Huang C-I, Pong W-F, Song K-J, Chang S-J, Guo J-H, Tai Y, Tsujimoto M, Isoda S, Chen C-W, Chen L-C, Chen K-H (2013) Band gap engineering of chemical vapor deposited Graphene by in situ BN doping. ACS Nano 7(2):1333–1341. https://doi.org/10.1021/nn3049158

    Article  CAS  PubMed  Google Scholar 

  4. Balachandran PV, Kowalski B, Sehirlioglu A, Lookman T (2018) Experimental search for high-temperature ferroelectric perovskites guided by two-step machine learning. Nat Commun 9(1):1668. https://doi.org/10.1038/s41467-018-03821-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Le TC, Winkler DA (2016) Discovery and optimization of materials using evolutionary approaches. Chem Rev 116(10):6107–6132. https://doi.org/10.1021/acs.chemrev.5b00691

    Article  CAS  PubMed  Google Scholar 

  6. Graser J, Kauwe SK, Sparks TD (2018) Machine learning and energy minimization approaches for crystal structure predictions: a review and new horizons. Chem Mater 30(11):3601–3612. https://doi.org/10.1021/acs.chemmater.7b05304

    Article  CAS  Google Scholar 

  7. Lookman T, Balachandran PV, Xue D, Yuan R (2019) Active learning in materials science with emphasis on adaptive sampling using uncertainties for targeted design. npj Computational Materials 5(1):21. https://doi.org/10.1038/s41524-019-0153-8

    Article  Google Scholar 

  8. von Lilienfeld OA (2018) Quantum machine learning in chemical compound space. Angew Chem Int Ed 57(16):4164–4169. https://doi.org/10.1002/anie.201709686

    Article  CAS  Google Scholar 

  9. Schmidt J, Marques MRG, Botti S, Marques MAL (2019) Recent advances and applications of machine learning in solid-state materials science. npj Computational Materials 5(1):83. https://doi.org/10.1038/s41524-019-0221-0

    Article  Google Scholar 

  10. Dong Y, Wu C, Zhang C, Liu Y, Cheng J, Lin J (2019) Bandgap prediction by deep learning in configurationally hybridized graphene and boron nitride. npj Computational Materials 5(1):26. https://doi.org/10.1038/s41524-019-0165-4

    Article  CAS  Google Scholar 

  11. Schmidt J, Shi J, Borlido P, Chen L, Botti S, Marques MAL (2017) Predicting the thermodynamic stability of solids combining density functional theory and machine learning. Chem Mater 29(12):5090–5103. https://doi.org/10.1021/acs.chemmater.7b00156

    Article  CAS  Google Scholar 

  12. Zhang Y, Ling C (2018) A strategy to apply machine learning to small datasets in materials science. npj Computational Materials 4(1):25. https://doi.org/10.1038/s41524-018-0081-z

    Article  CAS  Google Scholar 

  13. Himanen L, Geurts A, Foster AS, Rinke P Data-driven materials science: status, challenges, and perspectives. Adv Sci 6:1900808. https://doi.org/10.1002/advs.201900808

  14. Schroff F, Kalenichenko D, Philbin J FaceNet: a unified embedding for face recognition and clustering. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 7–12 June 2015 2015. pp 815–823. doi: https://doi.org/10.1109/CVPR.2015.7298682

  15. Weyand T, Kostrikov I, Philbin J (2016) PlaNet - photo geolocation with convolutional neural networks. arXiv e-prints

  16. Silver D, Huang A, Maddison CJ, Guez A, Sifre L, van den Driessche G, Schrittwieser J, Antonoglou I, Panneershelvam V, Lanctot M, Dieleman S, Grewe D, Nham J, Kalchbrenner N, Sutskever I, Lillicrap T, Leach M, Kavukcuoglu K, Graepel T, Hassabis D (2016) Mastering the game of Go with deep neural networks and tree search. Nature 529:484. https://doi.org/10.1038/nature16961 https://www.nature.com/articles/nature16961#supplementary-information

    Article  CAS  PubMed  Google Scholar 

  17. Dehghannasiri R, Xue D, Balachandran PV, Yousefi MR, Dalton LA, Lookman T, Dougherty ER (2017) Optimal experimental design for materials discovery. Comput Mater Sci 129:311–322. https://doi.org/10.1016/j.commatsci.2016.11.041

    Article  CAS  Google Scholar 

  18. Janet JP, Liu F, Nandy A, Duan C, Yang T, Lin S, Kulik HJ (2019) Designing in the face of uncertainty: exploiting electronic structure and machine learning models for discovery in inorganic chemistry. Inorg Chem. https://doi.org/10.1021/acs.inorgchem.9b00109

  19. Chen X, Jørgensen MS, Li J, Hammer B (2018) Atomic energies from a convolutional neural network. J Chem Theory Comput 14(7):3933–3942. https://doi.org/10.1021/acs.jctc.8b00149

    Article  CAS  PubMed  Google Scholar 

  20. Vamathevan J, Clark D, Czodrowski P, Dunham I, Ferran E, Lee G, Li B, Madabhushi A, Shah P, Spitzer M, Zhao S (2019) Applications of machine learning in drug discovery and development. Nat Rev Drug Discov. https://doi.org/10.1038/s41573-019-0024-5

  21. Moriwaki H, Tian Y-S, Kawashita N, Takagi T (2018) Mordred: a molecular descriptor calculator. J Cheminform 10(1):4. https://doi.org/10.1186/s13321-018-0258-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Balachandran PV (2019) Machine learning guided design of functional materials with targeted properties. Comput Mater Sci 164:82–90. https://doi.org/10.1016/j.commatsci.2019.03.057

    Article  CAS  Google Scholar 

  23. Singh AR, Rohr BA, Gauthier JA, Nørskov JK (2019) Predicting chemical reaction barriers with a machine learning model. Catal Lett 149(9):2347–2354. https://doi.org/10.1007/s10562-019-02705-x

    Article  CAS  Google Scholar 

  24. Ulissi ZW, Medford AJ, Bligaard T, Nørskov JK (2017) To address surface reaction network complexity using scaling relations machine learning and DFT calculations. Nat Commun 8(1):14621. https://doi.org/10.1038/ncomms14621

    Article  PubMed  PubMed Central  Google Scholar 

  25. Todorović M, Gutmann MU, Corander J, Rinke P (2019) Bayesian inference of atomistic structure in functional materials. npj Computational Materials 5(1):35. https://doi.org/10.1038/s41524-019-0175-2

    Article  CAS  Google Scholar 

  26. Zarzycki P, Rosso KM (2019) Energetics and the role of defects in Fe(II)-catalyzed goethite recrystallization from molecular simulations. ACS Earth Space Chem 3(2):262–272. https://doi.org/10.1021/acsearthspacechem.8b00175

    Article  CAS  Google Scholar 

  27. Gualtieri AF, Venturelli P (1999) In situ study of the goethite-hematite phase transformation by real time synchrotron powder diffraction. Am Mineral 84(5–6):895–904. https://doi.org/10.2138/am-1999-5-624

    Article  CAS  Google Scholar 

  28. Spathariotis E, Kallianou C (2007) Adsorption of copper, zinc, and cadmium on goethite, aluminum-substituted goethite, and a system of kaolinite–goethite: surface complexation modeling. Commun Soil Sci Plant Anal 38(5–6):611–635. https://doi.org/10.1080/00103620701216005

    Article  CAS  Google Scholar 

  29. Liu H, Chen T, Frost R (2013) An overview of the role of goethite surfaces in the environment. Chemosphere 103. https://doi.org/10.1016/j.chemosphere.2013.11.065

  30. Jäger MOJ, Morooka EV, Federici Canova F, Himanen L, Foster AS (2018) Machine learning hydrogen adsorption on nanoclusters through structural descriptors. npj Computational Materials 4(1):37. https://doi.org/10.1038/s41524-018-0096-5

    Article  CAS  Google Scholar 

  31. Kresse G, Furthmüller J (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6(1):15–50. https://doi.org/10.1016/0927-0256(96)00008-0

    Article  CAS  Google Scholar 

  32. Kresse G, Hafner J (1993) Ab initio molecular dynamics for liquid metals. Phys Rev B 47(1):558–561. https://doi.org/10.1103/PhysRevB.47.558

    Article  CAS  Google Scholar 

  33. Kresse G, Hafner J (1994) Ab initio molecular-dynamics simulation of the liquid-metal--amorphous-semiconductor transition in germanium. Phys Rev B 49(20):14251–14269. https://doi.org/10.1103/PhysRevB.49.14251

    Article  CAS  Google Scholar 

  34. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865

    Article  CAS  PubMed  Google Scholar 

  35. Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50(24):17953–17979. https://doi.org/10.1103/PhysRevB.50.17953

    Article  Google Scholar 

  36. Dudarev SL, Botton GA, Savrasov SY, Humphreys CJ, Sutton AP (1998) Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study. Phys Rev B 57(3):1505–1509. https://doi.org/10.1103/PhysRevB.57.1505

    Article  CAS  Google Scholar 

  37. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13(12):5188–5192. https://doi.org/10.1103/PhysRevB.13.5188

    Article  Google Scholar 

  38. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E, Louppe G (2012) Scikit-learn: machine learning in python. J Mach Learn Res 12

  39. Gopakumar AM, Balachandran PV, Xue D, Gubernatis JE, Lookman T (2018) Multi-objective optimization for materials discovery via adaptive design. Sci Rep 8(1):3738. https://doi.org/10.1038/s41598-018-21936-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Abraham A, Pedregosa F, Eickenberg M, Gervais P, Mueller A, Kossaifi J, Gramfort A, Thirion B, Varoquaux G (2014) Machine learning for neuroimaging with scikit-learn. Front Neuroinform 8(14). https://doi.org/10.3389/fninf.2014.00014

  41. Wu S, Chang C-M, Mai G-S, Rubenstein DR, Yang C-M, Huang Y-T, Lin H-H, Shih L-C, Chen S-W, Shen S-F (2019) Artificial intelligence reveals environmental constraints on colour diversity in insects. Nat Commun 10(1):4554. https://doi.org/10.1038/s41467-019-12500-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Simm GN, Reiher M (2018) Error-controlled exploration of chemical reaction networks with Gaussian processes. J Chem Theory Comput 14(10):5238–5248. https://doi.org/10.1021/acs.jctc.8b00504

    Article  CAS  PubMed  Google Scholar 

  43. Rouet-Leduc B, Hulbert C, Barros K, Lookman T, Humphreys CJ (2017) Automatized convergence of optoelectronic simulations using active machine learning. Appl Phys Lett 111(4):043506. https://doi.org/10.1063/1.4996233

    Article  CAS  Google Scholar 

  44. Springenberg JT, Klein A, Falkner S, Hutter F (2016) Bayesian optimization with robust Bayesian neural networks. Paper presented at the Proceedings of the 30th International Conference on Neural Information Processing Systems, Barcelona, Spain,

  45. Kohavi R (1995) A study of cross-validation and bootstrap for accuracy estimation and model selection. Paper presented at the Proceedings of the 14th international joint conference on Artificial intelligence - Volume 2, Montreal, Quebec, Canada,

  46. Brochu E, Cora V. M, De Freitas N (2010) A tutorial on bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning, vol abs/1012.2599

  47. Jones DR, Schonlau M, Welch WJ (1998) Efficient global optimization of expensive black-box functions. J Glob Optim 13(4):455–492. https://doi.org/10.1023/A:1008306431147

    Article  Google Scholar 

  48. Viana FAC, Haftka RT, Watson LT (2013) Efficient global optimization algorithm assisted by multiple surrogate techniques. J Glob Optim 56(2):669–689. https://doi.org/10.1007/s10898-012-9892-5

    Article  Google Scholar 

  49. Mockus J, Tiesis V, Zilinskas A (2014) The application of Bayesian methods for seeking the extremum. In, vol 2. pp 117–129

  50. Fukazawa T, Harashima Y, Hou Z, Miyake T (2019) Bayesian optimization of chemical composition: a comprehensive framework and its application to RFe12 -type magnet compounds, vol 3. doi:https://doi.org/10.1103/PhysRevMaterials.3.053807

  51. Liu Y, Zhao T, Ju W, Shi S (2017) Materials discovery and design using machine learning. J Mater 3(3):159–177. https://doi.org/10.1016/j.jmat.2017.08.002

    Article  Google Scholar 

  52. Jørgensen MS, Larsen UF, Jacobsen KW, Hammer B (2018) Exploration versus exploitation in global atomistic structure optimization. J Phys Chem A 122(5):1504–1509. https://doi.org/10.1021/acs.jpca.8b00160

    Article  CAS  PubMed  Google Scholar 

  53. Ryan K, Lengyel J, Shatruk M (2018) Crystal structure prediction via deep learning. J Am Chem Soc 140(32):10158–10168. https://doi.org/10.1021/jacs.8b03913

    Article  CAS  PubMed  Google Scholar 

  54. Lookman T, Balachandran PV, Xue D, Hogden J, Theiler J (2017) Statistical inference and adaptive design for materials discovery. Curr Opinion Solid State Mater Sci 21(3):121–128. https://doi.org/10.1016/j.cossms.2016.10.002

    Article  CAS  Google Scholar 

  55. Himanen L, Jäger MOJ, Morooka EV, Federici Canova F, Ranawat YS, Gao DZ, Rinke P, Foster AS (2020) DScribe: library of descriptors for machine learning in materials science. Comput Phys Commun 247:106949. https://doi.org/10.1016/j.cpc.2019.106949

    Article  CAS  Google Scholar 

  56. Papalambros PY (2002) The optimization paradigm in engineering design: promises and challenges. Comput Aided Des 34(12):939–951. https://doi.org/10.1016/S0010-4485(01)00148-8

    Article  Google Scholar 

  57. Balachandran PV, Xue D, Theiler J, Hogden J, Gubernatis JE, Lookman T (2018) Importance of feature selection in machine learning and adaptive design for materials. In: Lookman T, Eidenbenz S, Alexander F, Barnes C (eds) Materials discovery and design: by means of data science and optimal learning. Springer International Publishing, Cham, pp 59–79. https://doi.org/10.1007/978-3-319-99465-9_3

    Chapter  Google Scholar 

  58. Bisbo MK, Hammer B (2020) Efficient global structure optimization with a machine-learned surrogate model. Phys Rev Lett 124(8):086102. https://doi.org/10.1103/PhysRevLett.124.086102

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The support of the Brazilian agencies: Fundação de Amparo à Pesquisa do Espírito Santo (FAPES)—project CNPq/FAPES PPP 22/2018, Conselho Nacional para o Desenvolvimento Científico e Tecnológico (CNPq), and Coordenação de Aperfeiçoamento de Pessoal de Ensino Superior (CAPES) are gratefully acknowledged. Also, we acknowledge the Computational resources provided by the Centro Nacional de Processamento de Alto Desempenho em São Paulo (CENAPAD-SP) and by the Bremen Center for Computational Material Science (BCCMS). Financial support from the DFG grant Nr. DE1158/8-1, the Research Training Group grant DFG-RTG2247, and the Max-Planck-Institute for Structure and Dynamics of Matter (MPSD) are gratefully acknowledged by the author M. C. da Silva.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maicon Pierre Lourenço.

Ethics declarations

Competing interest

The authors declare that they have no competing interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper belongs to Topical Collection XX - Brazilian Symposium of Theoretical Chemistry (SBQT2019)

Electronic supplementary material

ESM 1

In the Support Information (SI), the following can be found: (1) Density of States of the pure and modified goethite; (2) a brief discussion about statistical regression as used in the current Adaptive Design approach; (3) the Expected Improvement (EI) plot (in 3D) as a function of (μ − fmax) and σ(x); and (4) additional results of the stability and structure of the modified goethite. (PDF 1.26 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lourenço, M.P., dos Santos Anastácio, A., Rosa, A.L. et al. An adaptive design approach for defects distribution modeling in materials from first-principle calculations. J Mol Model 26, 187 (2020). https://doi.org/10.1007/s00894-020-04438-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-04438-w

Keywords

Navigation