Skip to main content

Advertisement

Log in

Investigating greenhouse gas adsorption in MOFs SIFSIX-2-Cu, SIFSIX-2-Cu-i, and SIFSIX-3-Cu through computational studies

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The selective adsorption of CO2 in mixture with other greenhouse gases by porous materials is challenging and it has several consequences from the environmental and economic point of view. We carried out DFT calculations with periodic boundary conditions and plane waves basis set to better understand the adsorption of CO2, CO, CH4, N2, O2, and H2 within the pore of the metal-organic frameworks (MOFs) SIFSIX-2-Cu, SIFSIX-2-Cu-i, and SIFSIX-3-Cu. These porous materials have a copper ion coordinated to an organic linker and the inorganic SiF62− pillar, and they show a remarkable CO2 uptake. Our results show that the adsorption occurs preferentially close to the inorganic pillar SiF6, which polarizes the gas molecule, increasing the electrostatic contribution to the interaction. The adsorption strength correlates with the size of the pore, and it is stronger in the smaller porous of SIFSIX-3-Cu for all gases. The successive loading of CO2 in a T-shape form inside the porous indicates a synergic polarization effect, increasing the adsorption energy in SIFSIX-2-Cu and SIFSIX-2-Cu-i, but not in SIFSIX-3-Cu. For all materials, we observe the following order in the adsorption energy: CO2 > CH4 > CO > N2 > O2 > H2, suggesting that a thermodynamic separation could be possible; however, kinetic effects are also important in SIFSIX-3-Cu.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hansen J, Sato M, Ruedy R, et al (2006) Sciences of the USA 14288-14293 PNAS

  2. Solomon S, Plattner G-K, Knutti R, Friedlingstein P (2009) Irreversible climate change due to carbon dioxide emissions. PNAS 106:1704–1709.

  3. Sumida K, Rogow DL, Mason JA et al (2012) Carbon dioxide capture in metal-organic frameworks. Chem Rev 112:724–781. https://doi.org/10.1021/cr2003272

    Article  CAS  PubMed  Google Scholar 

  4. Masson-Delmotte V, Zhai P, Pörtner H-O, et al Global warming of 1.5°C An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change,

  5. Boot-Handford ME, Abanades JC, Anthony EJ et al (2014) Carbon capture and storage update. Energy Environ Sci 7:130–189

    Article  CAS  Google Scholar 

  6. Yang H, Xu Z, Fan M et al (2008) Progress in carbon dioxide separation and capture: a review. J Environ Sci 20:14–27. https://doi.org/10.1016/S1001-0742(08)60002-9

    Article  CAS  Google Scholar 

  7. Leung DYC, Caramanna G, Maroto-Valer MM (2014) An overview of current status of carbon dioxide capture and storage technologies. Renew Sust Energ Rev 39:426–443

    Article  CAS  Google Scholar 

  8. L’Orange Seigo S, Dohle S, Siegrist M (2014) Public perception of carbon capture and storage (CCS): a review. Renew Sust Energ Rev 38:848–863

    Article  Google Scholar 

  9. Rochelle GT (2009) Amine scrubbing for CO2 capture. Science (80- ) 325:1652–1654. https://doi.org/10.1126/science.1176731

    Article  CAS  Google Scholar 

  10. Kim SH, Kim KH, Hong SH (2014) Carbon dioxide capture and use: organic synthesis using carbon dioxide from exhaust gas. Angew Chem Int Ed 53:771–774. https://doi.org/10.1002/anie.201308341

    Article  CAS  Google Scholar 

  11. Dissanayake PD, You S, Igalavithana AD et al (2020) Biochar-based adsorbents for carbon dioxide capture: a critical review. Renew Sust Energ Rev 119:109582. https://doi.org/10.1016/j.rser.2019.109582

    Article  CAS  Google Scholar 

  12. Shi X, Xiao H, Azarabadi H et al (2019) Sorbents for the direct capture of CO2 from ambient air. Angew Chem Int Ed 59:6984–7006. https://doi.org/10.1002/anie.201906756

    Article  CAS  Google Scholar 

  13. Adil K, Belmabkhout Y, Pillai RS et al (2017) Gas/vapour separation using ultra-microporous metal-organic frameworks: insights into the structure/separation relationship. Chem Soc Rev 46:3402–3430

    Article  CAS  PubMed  Google Scholar 

  14. Vismara R, Tuci G, Mosca N et al (2019) Amino-decorated bis(pyrazolate) metal-organic frameworks for carbon dioxide capture and green conversion into cyclic carbonates. Inorg Chem Front 6:533–545. https://doi.org/10.1039/c8qi00997j

    Article  CAS  Google Scholar 

  15. Liu J, Wei Y, Zhao Y (2019) Trace carbon dioxide capture by metal-organic frameworks. ACS Sustain Chem Eng 7:82–93. https://doi.org/10.1021/acssuschemeng.8b05590

    Article  CAS  Google Scholar 

  16. Yaghi OM, O’Keeffe M, Ockwig NW et al (2003) Reticular synthesis and the design of new materials. Nature 423:705–714. https://doi.org/10.1038/nature01650

    Article  CAS  PubMed  Google Scholar 

  17. O’Keeffe M, Yaghi OM (2012) Deconstructing the crystal structures of metal–organic frameworks and related materials into their underlying nets. Chem Rev 112:675–702. https://doi.org/10.1021/cr200205j

    Article  CAS  PubMed  Google Scholar 

  18. O’Keeffe M (2009) Design of MOFs and intellectual content in reticular chemistry: a personal view. Chem Soc Rev 38:1215. https://doi.org/10.1039/b802802h

    Article  CAS  PubMed  Google Scholar 

  19. Ji Z, Wang H, Canossa S et al (2020) Pore chemistry of metal–organic frameworks. Adv Funct Mater 2000238. https://doi.org/10.1002/adfm.202000238

  20. Murray LJ, Dincă M, Long JR (2009) Hydrogen storage in metal-organic frameworks. Chem Soc Rev 38:1294–1314. https://doi.org/10.1039/b802256a

    Article  CAS  PubMed  Google Scholar 

  21. Tranchemontagne DJ, Park KS, Furukawa H et al (2012) Hydrogen storage in new metal-organic frameworks. J Phys Chem C 116:13143–13151. https://doi.org/10.1021/jp302356q

    Article  CAS  Google Scholar 

  22. Gándara F, Furukawa H, Lee S, Yaghi OM (2014) High methane storage capacity in aluminum metal–organic frameworks. J Am Chem Soc 136:5271–5274. https://doi.org/10.1021/ja501606h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Silva P, Vilela SMF, Tomé JPC, Almeida Paz FA (2015) Multifunctional metal–organic frameworks: from academia to industrial applications. Chem Soc Rev 44:6774–6803. https://doi.org/10.1039/C5CS00307E

    Article  CAS  PubMed  Google Scholar 

  24. Li J-R, Sculley J, Zhou H-C (2012) Metal–organic frameworks for separations. Chem Rev 112:869–932. https://doi.org/10.1021/cr200190s

    Article  CAS  PubMed  Google Scholar 

  25. Das MC, Guo Q, He Y et al (2012) Interplay of metalloligand and organic ligand to tune micropores within isostructural mixed-metal organic frameworks (M’MOFs) for their highly selective separation of chiral and achiral small molecules. J Am Chem Soc 134:8703–8710. https://doi.org/10.1021/ja302380x

    Article  CAS  PubMed  Google Scholar 

  26. Herm ZR, Wiers BM, Mason JA et al (2013) Separation of hexane isomers in a metal-organic framework with triangular channels. Science 340:960–964. https://doi.org/10.1126/science.1234071

    Article  CAS  PubMed  Google Scholar 

  27. Tang Q, Liu S, Liu Y et al (2013) Cation sensing by a luminescent metal-organic framework with multiple Lewis basic sites. Inorg Chem 52:2799–2801. https://doi.org/10.1021/ic400029p

    Article  CAS  PubMed  Google Scholar 

  28. Chen B, Wang L, Xiao Y et al (2009) A luminescent metal-organic framework with Lewis basic pyridyl sites for the sensing of metal ions. Angew Chem Int Ed 48:500–503. https://doi.org/10.1002/anie.200805101

    Article  CAS  Google Scholar 

  29. Kreno LE, Leong K, Farha OK et al (2012) Metal-organic framework materials as chemical sensors. Chem Rev 112:1105–1125. https://doi.org/10.1021/cr200324t

    Article  CAS  PubMed  Google Scholar 

  30. Hu Z, Deibert BJ, Li J (2014) Luminescent metal–organic frameworks for chemical sensing and explosive detection. Chem Soc Rev 43:5815–5840. https://doi.org/10.1039/C4CS00010B

    Article  CAS  PubMed  Google Scholar 

  31. Na K, Choi KM, Yaghi OM, Somorjai GA (2014) Metal Nanocrystals embedded in single nanocrystals of MOFs give unusual selectivity as heterogeneous catalysts. Nano Lett 14:5979–5983. https://doi.org/10.1021/nl503007h

    Article  CAS  PubMed  Google Scholar 

  32. Dhakshinamoorthy A, Alvaro M, Garcia H (2012) Commercial metal-organic frameworks as heterogeneous catalysts. Chem Commun 48:11275–11288. https://doi.org/10.1039/c2cc34329k

    Article  CAS  Google Scholar 

  33. de Oliveira A, Alves JS, de Lima GF, De Abreu HA (2018) Acidic and basic sites of M2DEBDC (M = Mg or Mn and E = O or S) acting as catalysts for cyanosilylation of aldehydes. Polyhedron 154:98–107. https://doi.org/10.1016/j.poly.2018.07.036

    Article  CAS  Google Scholar 

  34. de Oliveira A, de Lima GF, De Abreu HA (2018) Structural and electronic properties of M-MOF-74 (M = Mg, Co or Mn). Chem Phys Lett 691:283–290. https://doi.org/10.1016/j.cplett.2017.11.027

    Article  CAS  Google Scholar 

  35. de Oliveira A, Mavrandonakis A, de Lima GF, De Abreu HA (2017) Cyanosilylation of aldehydes catalyzed by MIL-101(Cr): a theoretical investigation. ChemistrySelect 2:7813–7820. https://doi.org/10.1002/slct.201700946

    Article  CAS  Google Scholar 

  36. Nugent P, Belmabkhout Y, Burd SD et al (2013) Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation. Nature 495:80–84. https://doi.org/10.1038/nature11893

    Article  CAS  PubMed  Google Scholar 

  37. Sircar S (2006) Basic research needs for design of adsorptive gas separation processes. Ind Eng Chem Res 45:5435–5448. https://doi.org/10.1021/ie051056a

    Article  CAS  Google Scholar 

  38. Lu A-H, Hao G-P (2013) Porous materials for carbon dioxide capture. Annu reports sect “A”. Inorg Chem 109:484. https://doi.org/10.1039/c3ic90003g

    Article  CAS  Google Scholar 

  39. Ge X, Ma S(2020) CO2 Capture and Separation of Metal–Organic Frameworks. In: Jiang D-e, Mahurin SM, Dai S (eds) In Materials for Carbon Capture. https://doi.org/10.1002/9781119091219.ch2

  40. Forrest KA, Pham T, Elsaidi SK et al (2019) Investigating CO2 sorption in SIFSIX-3-M (M = Fe, Co, Ni, Cu, Zn) through computational studies. Cryst Growth Des 19:3732–3743. https://doi.org/10.1021/acs.cgd.9b00086

    Article  CAS  Google Scholar 

  41. Forrest KA, Pham T, Hogan A et al (2013) Computational studies of CO2 sorption and separation in an ultramicroporous metal-organic material. J Phys Chem C 117:17687–17698. https://doi.org/10.1021/jp405781c

    Article  CAS  Google Scholar 

  42. Safarifard V, Rodríguez-Hermida S, Guillerm V et al (2016) Influence of the amide groups in the CO2/N2 selectivity of a series of isoreticular, interpenetrated metal-organic frameworks. Cryst Growth Des 16:6016–6023. https://doi.org/10.1021/acs.cgd.6b01054

    Article  CAS  Google Scholar 

  43. Yu J, Xie L-H, Li J-R et al (2017) CO 2 capture and separations using MOFs: computational and experimental studies. Chem Rev 117:9674–9754. https://doi.org/10.1021/acs.chemrev.6b00626

    Article  CAS  PubMed  Google Scholar 

  44. Nugent P, Belmabkhout Y, Burd SD et al (2013) Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation. Nature 495:80–84. https://doi.org/10.1038/nature11893

    Article  CAS  PubMed  Google Scholar 

  45. Mason JA, Sumida K, Herm ZR et al (2011) Evaluating metal-organic frameworks for post-combustion carbon dioxide capture via temperature swing adsorption. Energy Environ Sci 4:3030–3040. https://doi.org/10.1039/c1ee01720a

    Article  CAS  Google Scholar 

  46. Xue DX, Cairns AJ, Belmabkhout Y et al (2013) Tunable rare-earth fcu-MOFs: a platform for systematic enhancement of CO2 adsorption energetics and uptake. J Am Chem Soc 135:7660–7667. https://doi.org/10.1021/ja401429x

    Article  CAS  PubMed  Google Scholar 

  47. Bae YS, Farha OK, Spokoyny AM et al (2008) Carborane-based metal-organic frameworks as highly selective sorbents for CO2 over methane. Chem Commun 35:4135–4137. https://doi.org/10.1039/b805785k

    Article  CAS  Google Scholar 

  48. Lu W, Sculley JP, Yuan D et al (2012) Polyamine-tethered porous polymer networks for carbon dioxide capture from flue gas. Angew Chem Int Ed 51:7480–7484. https://doi.org/10.1002/anie.201202176

    Article  CAS  Google Scholar 

  49. Serra-Crespo P, Ramos-Fernandez EV, Gascon J, Kapteijn F (2011) Synthesis and characterization of an amino functionalized MIL-101(Al): separation and catalytic properties. Chem Mater 23:2565–2572. https://doi.org/10.1021/cm103644b

    Article  CAS  Google Scholar 

  50. Demessence A, D’Alessandro DM, Foo ML, Long JR (2009) Strong CO2 binding in a water-stable, triazolate-bridged metal-organic framework functionalized with ethylenediamine. J Am Chem Soc 131:8784–8786. https://doi.org/10.1021/ja903411w

    Article  CAS  PubMed  Google Scholar 

  51. Shekhah O, Belmabkhout Y, Chen Z et al (2014) Made-to-order metal-organic frameworks for trace carbon dioxide removal and air capture. Nat Commun 5:1–7. https://doi.org/10.1038/ncomms5228

    Article  CAS  Google Scholar 

  52. Neofotistou E, Malliakas CD, Trikalitis PN (2009) Unprecedented sulfone-functionalized metal-organic frameworks and gas-sorption properties. Chem - A Eur J 15:4523–4527. https://doi.org/10.1002/chem.200900341

    Article  CAS  Google Scholar 

  53. Gao J, Qian X, Lin RB et al (2020) Mixed metal–organic framework with multiple binding sites for efficient C2H2/CO2 separation. Angew Chem Int Ed 59:4396–4400. https://doi.org/10.1002/anie.202000323

    Article  CAS  Google Scholar 

  54. Desai AV, Sharma S, Roy A, Ghosh SK (2019) Probing the role of anions in influencing the structure, stability, and properties in neutral N-donor linker based metal-organic frameworks. Cryst Growth Des 19:7046–7054. https://doi.org/10.1021/acs.cgd.9b00873

    Article  CAS  Google Scholar 

  55. Forrest KA, Pham T, Space B (2017) Comparing the mechanism and energetics of CO2 sorption in the SIFSIX series. CrystEngComm 19:3338–3347. https://doi.org/10.1039/C7CE00594F

    Article  CAS  Google Scholar 

  56. Burd SD, Ma S, Perman JA et al (2012) Highly selective carbon dioxide uptake by [Cu(bpy-n)2(SiF6 )] (bpy-1 = 4,4′-bipyridine; bpy-2 = 1,2-Bis(4-pyridyl)ethene). J Am Chem Soc 134:3663–3666. https://doi.org/10.1021/ja211340t

    Article  CAS  PubMed  Google Scholar 

  57. Pham T, Forrest KA, Chen KJ et al (2016) Theoretical investigations of CO2 and H2 sorption in robust molecular porous materials. Langmuir 32:11492–11505. https://doi.org/10.1021/acs.langmuir.6b03161

    Article  CAS  PubMed  Google Scholar 

  58. Chen K-J, Madden DG, Mukherjee S et al (2019) Synergistic sorbent separation for one-step ethylene purification from a four-component mixture. Science 366:241–246. https://doi.org/10.1126/science.aax8666

    Article  CAS  PubMed  Google Scholar 

  59. O’Nolan D, Madden DG, Kumar A et al (2018) Impact of partial interpenetration in a hybrid ultramicroporous material on C2H2/C2H4 separation performance. Chem Commun 54:3488–3491. https://doi.org/10.1039/c8cc01627e

    Article  CAS  Google Scholar 

  60. Liu D, Zhong C (2010) Understanding gas separation in metal–organic frameworks using computer modeling. J Mater Chem 20:10308–10318. https://doi.org/10.1039/c0jm01045f

    Article  CAS  Google Scholar 

  61. Keskin AA (2019) A review on computational modeling tools for MOF-based mixed matrix membranes. Computation 7:36. https://doi.org/10.3390/computation7030036

    Article  CAS  Google Scholar 

  62. Skarmoutsos I, Belmabkhout Y, Adil K et al (2017) CO 2 capture using the SIFSIX-2-Cu-i metal–organic framework: a computational approach. J Phys Chem C 121:27462–27472. https://doi.org/10.1021/acs.jpcc.7b08964

    Article  CAS  Google Scholar 

  63. Pham T, Forrest KA, Franz DM et al (2017) Predictive models of gas sorption in a metal-organic framework with open-metal sites and small pore sizes. Phys Chem Chem Phys 19:18587–18602. https://doi.org/10.1039/c7cp02767b

    Article  CAS  PubMed  Google Scholar 

  64. Ziaee A, Chovan D, Lusi M et al (2016) Theoretical optimization of pore size and chemistry in SIFSIX-3-M hybrid ultramicroporous materials. Cryst Growth Des 16:3890–3897. https://doi.org/10.1021/acs.cgd.6b00453

    Article  CAS  Google Scholar 

  65. Pham T, Forrest KA, Tudor B et al (2014) Theoretical investigations of CO2 and CH4 sorption in an interpenetrated diamondoid metal-organic material. Langmuir 30:6454–6462. https://doi.org/10.1021/la500967w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Giannozzi P, Baroni S, Bonini N et al (2009) QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys Condens Matter 21:395502–395521. https://doi.org/10.1088/0953-8984/21/39/395502

    Article  PubMed  Google Scholar 

  67. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865

    Article  CAS  PubMed  Google Scholar 

  68. Vanderbilt D (1990) Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys Rev B 41:7892–7895. https://doi.org/10.1103/PhysRevB.41.7892

    Article  CAS  Google Scholar 

  69. Monkhorst HJ (1976) Special points fro Brillouin-zone integretions. Phys Rev B 13:5188–5192. https://doi.org/10.1103/PhysRevB.13.5188

    Article  Google Scholar 

  70. Chen Y, Bylaska EJ, Weare JH (2017) Weakly bound water structure, bond valence saturation and water dynamics at the goethite (100) surface/aqueous interface: Ab initio dynamical simulations. Geochem Trans 18:1–14. https://doi.org/10.1186/s12932-017-0040-5

    Article  CAS  Google Scholar 

  71. Grimme S (2006) Semiempirical hybrid density functional with perturbative second-order correlation. J Chem Phys 124. https://doi.org/10.1063/1.2148954

  72. Grimme S (2004) Accurate description of van der Waals complexes by density functional theory including empirical corrections. J Comput Chem 25:1463–1473. https://doi.org/10.1002/jcc.20078

    Article  CAS  PubMed  Google Scholar 

  73. Curtis FE, Que X (2015) A quasi-Newton algorithm for nonconvex, nonsmooth optimization with global convergence guarantees. Math Program Comput 7:399–428. https://doi.org/10.1007/s12532-015-0086-2

    Article  Google Scholar 

  74. Otero-de-la-Roza A, Johnson ER, Luaña V (2014) Critic2: a program for real-space analysis of quantum chemical interactions in solids. Comput Phys Commun 185:1007–1018. https://doi.org/10.1016/j.cpc.2013.10.026

    Article  CAS  Google Scholar 

  75. Bader RFW (1991) A quantum theory of molecular structure and its applications. Chem Rev 91:893–928. https://doi.org/10.1021/cr00005a013

    Article  CAS  Google Scholar 

  76. Kumar PSV, Raghavendra V, Subramanian V (2016) Bader’s theory of atoms in molecules (AIM) and its applications to chemical bonding. J Chem Sci 128:1527–1536. https://doi.org/10.1007/s12039-016-1172-3

    Article  CAS  Google Scholar 

  77. Contreras-García J, Johnson ER, Keinan S et al (2011) NCIPLOT: a program for plotting noncovalent interaction regions. J Chem Theory Comput 7:625–632. https://doi.org/10.1021/ct100641a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Yang L, Cui X, Zhang Y et al (2018) A highly sensitive flexible metal-organic framework sets a new benchmark for separating propyne from propylene. J Mater Chem A 6:24452–24458. https://doi.org/10.1039/c8ta08198k

    Article  CAS  Google Scholar 

  79. Elsaidi SK, Mohamed MH, Schaef HT et al (2015) Hydrophobic pillared square grids for selective removal of CO2 from simulated flue gas. Chem Commun 51:15530–15533. https://doi.org/10.1039/c5cc06577a

    Article  CAS  Google Scholar 

  80. Yang M, Ma C, Xu M et al (2019) Recent advances in CO2 adsorption from air: a review. Curr Pollut Reports 5:272–293. https://doi.org/10.1007/s40726-019-00128-1

    Article  CAS  Google Scholar 

  81. Chen KJ, Scott HS, Madden DG et al (2016) Benchmark C2H2/CO2 and CO2/C2H2 separation by two closely related hybrid ultramicroporous materials. Chem 1:753–765. https://doi.org/10.1016/j.chempr.2016.10.009

    Article  CAS  Google Scholar 

  82. Cioce CR, McLaughlin K, Belof JL, Space B (2013) A polarizable and transferable PHAST CO2 potential for use in materials simulation. J Chem Theory Comput 9:5550–5557. https://doi.org/10.1021/ct400526a

    Article  CAS  PubMed  Google Scholar 

  83. Tuckett R (2018) Greenhouse Gases. Reference module in chemistry. Elsevier, Molecular Sciences and Chemical Engineering, pp 362–372

    Google Scholar 

  84. Mehio N, Dai S, Jiang DE (2014) Quantum mechanical basis for kinetic diameters of small gaseous molecules. J Phys Chem A 118:1150–1154. https://doi.org/10.1021/jp412588f

    Article  CAS  PubMed  Google Scholar 

  85. Ismail AF, Chandra Khulbe K, Matsuura T (2015) Gas separation membranes. Springer International Publishing, Cham

    Book  Google Scholar 

Download references

Acknowledgments

This work was funded by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq-grant no. 446381/2014-4), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Fundação de Amparo à Pesquisa de Minas Gerais (FAPEMIG-grant no. APQ-00612-14), INCT–Acqua (www.acqua-inct.org) and RENOVAMIN. We gratefully thank Prof. Renata Diniz from Universidade Federal de Minas Gerais, who helps us with the crystallographic reduction of the SIFSIX-2-Cu-i structure and the Programa de Pós-Graduação Multicentrico em Química de Minas Gerais (PPGMQ-MG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guilherme Ferreira de Lima.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper belongs to Topical Collection XX - Brazilian Symposium of Theoretical Chemistry (SBQT2019)

Electronic supplementary material

ESM 1

In this material the simulated diffractogram of SIFSIX-2-Cu-i, the Bader charges and the NCI plots are given. (PDF 2523 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guimarães, W.G., de Lima, G.F. Investigating greenhouse gas adsorption in MOFs SIFSIX-2-Cu, SIFSIX-2-Cu-i, and SIFSIX-3-Cu through computational studies. J Mol Model 26, 188 (2020). https://doi.org/10.1007/s00894-020-04437-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-04437-x

Keywords

Navigation