Skip to main content

Advertisement

Log in

Morphological Development, Coarsening, and Oxidation Behavior of Ni-Al-Nb Superalloys

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The grain structure, precipitate size, morphology, volume fraction and distribution, coarsening kinetics, hardness and cyclic oxidation behavior of (γ + γ′) Ni-13Al-2Nb (at.%) and Ni-11Al-4Nb (at.%) superalloys, aged at 800 °C from 1 to 256 h, are investigated in detail. For the earliest aging times (1 and 4 h), the morphology of the γ′ precipitates are cuboidal. With increasing aging time, the γ′ precipitates coarsen, the average precipitate radius increases, and the morphology changes from cuboidal-to-parallelepipedic-to-irregular shape. The average precipitate size also increases with increasing Nb content from 2 to 4 at.%. At 4 h aging time, Ni-13Al-2Nb and Ni-11Al-4Nb superalloys exhibit peak microhardness values of 3.7 and 3.9 GPa, respectively. The results of cyclic oxidation tests show that important scale spallation is observed for the investigated samples. In addition, the surface scale product of both superalloys at all conditions is NiO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M.S. Atas and M. Yildirim, Temporal Evolution, Coarsening Behavior and Oxidation Resistance of Ni-15Al Superalloy, J. Alloys Compd., 2019, 809, p 151784

    CAS  Google Scholar 

  2. C. Li, G. Guo, Z. Yuan, W. Xuan, X. Li, Y. Zhong, and Z. Ren, Chemical Segregation and Coarsening of γ′ Precipitates in Ni-Based Superalloy During Heat Treatment in Alternating Magnetic Field, J. Alloys Compd., 2017, 720, p 272–276

    CAS  Google Scholar 

  3. T.M. Pollock and S. Tin, Nickel-Based Superalloys for Advanced Turbine Engines: Chemistry, Microstructure and Properties, J. Propul. Power, 2006, 22(2), p 361–374

    CAS  Google Scholar 

  4. J. Wu, C. Li, Y. Liu, Y. Wu, Q. Guo, H. Li, and H. Wang, Effect of Annealing Treatment on Microstructure Evolution and Creep Behavior of a Multiphase Ni3Al-Based Superalloy, Mater. Sci. Eng. A, 2019, 743, p 623–635

    CAS  Google Scholar 

  5. Y. Wu, Y. Liu, C. Li, X. Xia, J. Wu, and H. Li, Coarsening Behavior of γ′ Precipitates in the γ’ + γ Area of a Ni3Al-Based Alloy, J. Alloys Compd., 2019, 771, p 526–533

    CAS  Google Scholar 

  6. S. Tang, L.K. Ning, T.Z. Xin, and Z. Zheng, Coarsening Behavior of Gamma Prime Precipitates in a Nickel Based Single Crystal Superalloy, J. Mater. Sci. Technol., 2016, 32(2), p 172–176

    CAS  Google Scholar 

  7. G. Wang, H. Ding, R. Chen, J. Guo, and H. Fu, Effect of Current Intensity on Microstructure of Ni3Al Intermetallics Prepared by Directional Solidification Electromagnetic Cold Crucible Technique, Acta Metall. Sin., 2017, 53(11), p 1461–1468

    CAS  Google Scholar 

  8. C.K. Sudbrack, T.D. Ziebell, R.D. Noebe, and D.N. Seidman, Effects of a Tungsten Addition on the Morphological Evolution, Spatial Correlations and Temporal Evolution of a Model Ni-Al-Cr Superalloy, Acta Mater., 2008, 56(3), p 448–463

    CAS  Google Scholar 

  9. F.H. Latief, K. Kakehi, and Y. Tashiro, Oxidation Behavior Characteristics of an Aluminized Ni-Based Single Crystal Superalloy CM186LC Between 900 °C and 1100 °C in Air, J. Ind. Eng. Chem., 2013, 19(6), p 1926–1932

    CAS  Google Scholar 

  10. R.C. Reed, The Superalloys: Fundamentals and Applications, Cambridge University Press, Cambridge, 2008

    Google Scholar 

  11. S. Antonov, M. Detrois, R.C. Helmink, and S. Tin, Precipitate Phase Stability and Compositional Dependence on Alloying Additions in γ–γ′–δ–η Ni-Base Superalloys, J. Alloys Compd., 2015, 626, p 76–86

    CAS  Google Scholar 

  12. R. Eriş, A.O. Mekhrabov, and M.V. Akdeniz, High-Temperature Site Preference and Atomic Short-Range Ordering Characteristics of Ternary Alloying Elements in γ′-Ni3Al Intermetallics, Philos. Mag., 2017, 97(29), p 2615–2631

    Google Scholar 

  13. E.Y. Plotnikov, Z. Mao, S.-I. Baik, M. Yildirim, Y. Li, D. Cecchetti, R.D. Noebe, G. Martin, D.N. Seidman, A Correlative Four-Dimensional Study of Phase-Separation at the Subnanoscale to Nanoscale of a Ni-Al Alloy, Acta Mater. 171, 306–333 (2019)

    CAS  Google Scholar 

  14. R. Schafrik, R. Sprague, Saga of Gas Turbine Materials, Part I-Four-Part Series Traces the Evolution of High-Temperature Materials in Aircraft Gas Turbine Engines. The Story Begins in 1929, with the Filing of the Whittle, Adv. Mater. Process. 162(3), 33–36 (2004)

  15. D.W. Yun, S.M. Seo, H.W. Jeong, and Y.S. Yoo, Effect of Refractory Elements and Al on the High Temperature Oxidation of Ni-Base Superalloys and Modelling of Their Oxidation Resistance, J. Alloys Compd., 2017, 710, p 8–19

    CAS  Google Scholar 

  16. A. Heckl, R. Rettig, R.F. Singer, Creep Rupture Strength of Re and Ru Containing Experimental Nickel-Base Superalloys, Advanced Materials Research, 2011, Trans Tech Publ., pp 339–344

  17. F. Latief, K. Kakehi, H.A.-C. Yeh, and H. Murakami, Influences of Ruthenium and Crystallographic Orientation on Creep Behavior of Aluminized Nickel-Base Single Crystal Superalloys, Mater. Sci. Eng. A, 2014, 592, p 143–152

    CAS  Google Scholar 

  18. M. Nathal and L. Ebert, The Influence of Cobalt, Tantalum, and Tungsten on the Elevated Temperature Mechanical Properties of Single Crystal Nickel-Base Superalloys, Metall. Trans. A, 1985, 16(10), p 1863–1870

    Google Scholar 

  19. J. Zhang, J. Li, T. Jin, X. Sun, and Z. Hu, Effect of Mo Concentration on Creep Properties of a Single Crystal Nickel-Base Superalloy, Mater. Sci. Eng. A, 2010, 527(13–14), p 3051–3056

    Google Scholar 

  20. F. Weng, H. Yu, K. Wan, and C. Chen, The Influence of Nb on Hot Corrosion Behavior of Ni-Based Superalloy at 800 °C in a Mixture of Na2SO4–NaCl, J. Mater. Res., 2014, 29(21), p 2596–2603

    CAS  Google Scholar 

  21. F. Weng, H. Yu, C. Chen, and K. Wan, Fabrication of Ni-Based Superalloys Containing Nb and Their High Temperature Oxidation Behaviors, Mater. Manuf. Processes, 2015, 30(11), p 1364–1369

    CAS  Google Scholar 

  22. J. Huang, H. Fang, X. Fu, F. Huang, H. Wan, Q. Zhang, S. Deng, and J. Zu, High-Temperature Oxidation Behavior and Mechanism of a New Type of Wrought Ni-Fe-Cr-Al Superalloy up to 1300 °C, Oxidat. Met., 2000, 53(3–4), p 273–287

    CAS  Google Scholar 

  23. J.E. Battles, G. Gundersen, and R.K. Edwards, Mass Spectrometric Study of the Rhenium-Oxygen System, J. Phys. Chem., 1968, 72(12), p 3963–3969

    CAS  Google Scholar 

  24. W.E. Bell and M. Tagami, High-Temperature Chemistry of the Ruthenium—Oxygen System1, J. Phys. Chem., 1963, 67(11), p 2432–2436

    CAS  Google Scholar 

  25. N. Birks, G.H. Meier, and F.S. Pettit, Introduction to the High Temperature Oxidation of Metals, Cambridge University Press, Cambridge, 2006

    Google Scholar 

  26. Q. Yang, W. Xiong, S. Li, H. Dai, and J. Li, Characterization of Oxide Scales to Evaluate High Temperature Oxidation Behavior of Ti(C, N)-Based Cermets in Static Air, J. Alloys Compd., 2010, 506(1), p 461–467

    CAS  Google Scholar 

  27. C. Booth-Morrison, R.D. Noebe, and D.N. Seidman, Effects of Tantalum on the Temporal Evolution of a Model Ni-Al-Cr Superalloy During Phase Decomposition, Acta Mater., 2009, 57(3), p 909–920

    CAS  Google Scholar 

  28. Y. Huang, Z. Mao, R.D. Noebe, and D.N. Seidman, The Effects of Refractory Elements on Ni-Excesses and Ni-Depletions at γ (fcc)/γ′(L12) Interfaces in Model Ni-Based Superalloys: Atom-Probe Tomographic Experiments and First-Principles Calculations, Acta Mater., 2016, 121, p 288–298

    CAS  Google Scholar 

  29. C.K. Sudbrack, R.D. Noebe, and D.N. Seidman, Compositional Pathways and Capillary Effects During Isothermal Precipitation in a Nondilute Ni-Al-Cr Alloy, Acta Mater., 2007, 55(1), p 119–130

    CAS  Google Scholar 

  30. M. Fährmann, E. Fährmann, T. Pollock, and W. Johnson, Element Partitioning During Coarsening of (γ − γ′) Ni-Al-Mo Alloys, Metall. Mater. Trans. A, 1997, 28(9), p 1943–1945

    Google Scholar 

  31. M. Fährmann, P. Fratzl, O. Paris, E. Fährmann, and W.C. Johnson, Influence of Coherency Stress on Microstructural Evolution in Model Ni-Al-Mo Alloys, Acta Metall. Mater., 1995, 43(3), p 1007–1022

    Google Scholar 

  32. Y. Tu, Z. Mao, and D.N. Seidman, Phase-Partitioning and Site-Substitution Patterns of Molybdenum in a Model Ni-Al-Mo Superalloy: An Atom-Probe Tomographic and First-Principles Study, Appl. Phys. Lett., 2012, 101(12), p 121910

    Google Scholar 

  33. T. Wang, G. Sheng, Z.-K. Liu, and L.-Q. Chen, Coarsening Kinetics of γ′ Precipitates in the Ni–Al–Mo System, Acta Mater., 2008, 56(19), p 5544–5551

    CAS  Google Scholar 

  34. J. Cisse and R. Davies, Nickel-Rich Portion of the Ni-Al-Nb Phase Diagram, Metall. Trans., 1970, 1(7), p 2003–2006

    CAS  Google Scholar 

  35. J.C. Russ and R.T. Dehoff, Practical Stereology, Springer, Berlin, 2012

    Google Scholar 

  36. P.J. Bocchini, C.K. Sudbrack, R.D. Noebe, D.C. Dunand, and D.N. Seidman, Effects of Titanium Substitutions for Aluminum and Tungsten in Co-10Ni-9Al-9W (at.%) Superalloys, Mater. Sci. Eng. A, 2017, 705, p 122–132

    CAS  Google Scholar 

  37. T. Pollock and A. Argon, Directional Coarsening in Nickel-Base Single Crystals with High Volume Fractions of Coherent Precipitates, Acta Metall. Mater., 1994, 42(6), p 1859–1874

    CAS  Google Scholar 

  38. M.E. Thompson, C.S. Su, and P.W. Voorhees, The Equilibrium Shape of a Misfitting Precipitate, Acta Metall. Mater., 1994, 42(6), p 2107–2122

    CAS  Google Scholar 

  39. C.K. Sudbrack, Decomposition Behavior in Model Ni-Al-Cr-X Superalloys: Temporal Evolution and Compositional Pathways on a Nanoscale, Northwestern University Evanston, Evanston, 2004

    Google Scholar 

  40. S.V. Prikhodko, J.D. Carnes, D.G. Isaak, A.J. Ardell, Elastic Constants of a Ni-12.69 at.% Al Alloy From 295 to 1300 K, Scr. Mater. 38(1), 67–72 (1997)

  41. K.E. Yoon, R.D. Noebe, D.N. Seidman, Effects of Rhenium Addition on the Temporal Evolution of the Nanostructure and Chemistry of a Model Ni–Cr–Al Superalloy. I: Experimental Observations, Acta Mater. 55(4), 1145–1157 (2007)

  42. K.E. Yoon, R.D. Noebe, D.N. Seidman, Effects of Rhenium Addition on the Temporal Evolution of the Nanostructure and Chemistry of a Model Ni-Cr-Al Superalloy. II: Analysis of the Coarsening Behavior, Acta Mater. 55(4), 1159–1169 (2007)

  43. E. Contreras-Piedras, H.J. Dorantes-Rosales, V.M. López-Hirata, F. Hernández Santiago, J.L. González-Velázquez, F.I. López-Monrroy, Analysis of Precipitation in Fe-Rich Fe-Ni-Al Alloys by Diffusion Couples, Mater. Sci. Eng. A 558, 366–370 (2012)

  44. K. Kawasaki and Y. Enomoto, Statistical Theory of Ostwald Ripening with Elastic Field Interaction, Physica A, 1988, 150(3), p 463–498

    CAS  Google Scholar 

  45. I.M. Lifshitz and V.V. Slyozov, The Kinetics of Precipitation from Supersaturated Solid Solutions, J. Phys. Chem. Solids, 1961, 19(1), p 35–50

    Google Scholar 

  46. C. Wagner, Theorie der alterung von niederschlägen durch umlösen (Ostwald-reifung), Zeitschrift für Elektrochemie, Berichte der Bunsengesellschaft für physikalische, Chemie, 1961, 65(7–8), p 581–591

    CAS  Google Scholar 

  47. R. Wagner, R. Kampmann, and P.W. Voorhees, Homogeneous second phase precipitation, Phase transformations in materials, 1991, 5, p 213–303

    Google Scholar 

  48. A.J. Ardell and R.B. Nicholson, The Coarsening of γ’ in Ni-Al Alloys, J. Phys. Chem. Solids, 1966, 27(11), p 1793–1794

    CAS  Google Scholar 

  49. J.Z. Zhu, T. Wang, A.J. Ardell, S.H. Zhou, Z.K. Liu, and L.Q. Chen, Three-Dimensional Phase-Field Simulations of Coarsening Kinetics of γ′ Particles in Binary Ni-Al Alloys, Acta Mater., 2004, 52(9), p 2837–2845

    CAS  Google Scholar 

  50. Y. Amouyal, Z. Mao, C. Booth-Morrison, and D.N. Seidman, On the Interplay Between Tungsten and Tantalum Atoms in Ni-Based Superalloys: An Atom-Probe Tomographic and First-Principles Study, Appl. Phys. Lett., 2009, 94(4), p 041917

    Google Scholar 

  51. C. Booth-Morrison, Z. Mao, R.D. Noebe, and D.N. Seidman, Chromium and Tantalum Site Substitution Patterns in Ni 3 Al (L 1 2) γ′-Precipitates, Appl. Phys. Lett., 2008, 93(3), p 033103

    Google Scholar 

  52. M. Durand-Charre, The Microstructure of Superalloys, Gordon and Breach, Amsterdam, 1997

    Google Scholar 

  53. A. Oni, S. Broderick, K. Rajan, and J. LeBeau, Atom Site Preference and γ′/γ Mismatch Strain in NiAlCoTi Superalloys, Intermetallics, 2016, 73, p 72–78

    CAS  Google Scholar 

  54. C.T. Sims, N.S. Stoloff, and W.C. Hagel, Superalloys II, Wiley, New York, 1987

    Google Scholar 

  55. C. Jiang and B. Gleeson, Site Preference of Transition Metal Elements in Ni3Al, Scr. Mater., 2006, 55(5), p 433–436

    CAS  Google Scholar 

  56. N.J. Calos, J.S. Forrester, and G.B. Schaffer, The Mechanisms of Combustion and Continuous Reactions during Mechanical Alloying, J. Solid State Chem., 2001, 158(2), p 268–278

    CAS  Google Scholar 

  57. W.C. Wang, Y.X. Shen, J.H. Li, X.Y. Li, and B.X. Liu, Formation and Structural Transformation of the Nonequilibrium Phases in the Ru–Ta System Induced by Ion Beam Mixing, J. Phys.: Condens. Matter, 2006, 18(43), p 9911–9916

    CAS  Google Scholar 

  58. X.D. Dai, Y. Kong, J.H. Li, and B.X. Liu, Extended Finnis–Sinclair Potential for BCC and FCC Metals and Alloys, J. Phys.: Condens. Matter, 2006, 18(19), p 4527–4542

    CAS  Google Scholar 

  59. J. Zhang, M.-A. Pilette, F. Cuevas, T. Charpentier, F. Mauri, and M. Latroche, X-ray Diffraction and NMR Studies of Na3 − nLinAlH6 (n = 0, 1, 2) Alanates Synthesized by High-Pressure Reactive Ball Milling, J. Phys. Chem. C, 2009, 113(50), p 21242–21252

    CAS  Google Scholar 

  60. M. Straumanis and S. Zyszczynski, Lattice Parameters, Thermal Expansion Coefficients and Densities of Nb, and of Solid Solutions Nb-O and Nb-N-O and Their Defect Structure, J. Appl. Crystallogr., 1970, 3(1), p 1–6

    CAS  Google Scholar 

  61. A. Gorbunoff, A.A. Levin, and D.C. Meyer, Low-Temperature Thermal Expansion of Metastable Intermetallic Fe-Cr Phases, J. Alloys Compd., 2009, 480(1), p 152–156

    CAS  Google Scholar 

  62. M. Beck, M. Ellner, and E.J. Mittemeijer, The Formation of Interstitial Solid Solutions Based on Solvents Showing the FCC Structure: Elastic Versus Chemical Interaction, Acta Mater., 2001, 49(6), p 985–993

    CAS  Google Scholar 

  63. S. Ochial, Y. Oya, and T. Suzuki, Alloying Behaviour of Ni3Al, Ni3Ga, Ni3Si and Ni3Ge, Acta Metall., 1984, 32(2), p 289–298

    Google Scholar 

  64. Y. Mishima, S. Ochiai, N. Hamao, M. Yodogawa, and T. Suzuki, Solid Solution Hardening of Nickel—Role of Transition Metal and B-Subgroup Solutes, Trans. Jpn. Inst. Met., 1986, 27(9), p 656–664

    CAS  Google Scholar 

  65. T.H. Hazlett, E.R. Parker, and V.F. Zackay, Effect of Some Solid Solution Alloying Elements on the Creep Parameters of Nickel, University of California, Institute of Engineering Research, New York, 1952

    Google Scholar 

  66. A.D. Brailsford and P. Wynblatt, The Dependence of Ostwald Ripening Kinetics on Particle Volume Fraction, Acta Metall., 1979, 27(3), p 489–497

    CAS  Google Scholar 

  67. H. Aaronson and F. LeGoues, An Assessment of Studies on Homogeneous Diffusional Nucleation Kinetics in Binary Metallic Alloys, Metall. Trans. A, 1992, 23(7), p 1915–1945

    Google Scholar 

  68. J.P. Moffat, T.E. Whitfield, K.A. Christofidou, E.J. Pickering, N.G. Jones, and H.J. Stone, The Effect of Heat Treatment on the Oxidation Resistance of Cobalt-Based Superalloys, Metals, 2020, 10(2), p 248

    CAS  Google Scholar 

  69. P. Berthod, C. Vébert, and L. Aranda, Effect of Dendritic Orientation on the High Temperature Oxidation Kinetic of Tantalum-Containing Nickel-Base Alloys, J. Mater. Sci., 2007, 42(1), p 352–362

    CAS  Google Scholar 

  70. P. Berthod, S. Raude, A. Renck, C. Rapin, R. Podor, P. Steinmetz, Influence of the Microstructural Texture of Cast Superalloys on Their High-Temperature Oxidation Behaviour, Mater. Sci. Forum, 2004, Trans Tech Publ, pp. 1173–1180

  71. X. Wang and J.A. Szpunar, Effects of Grain Sizes on the Oxidation Behavior of Ni-Based Alloy 230 and N, J. Alloys Compd., 2018, 752, p 40–52

    CAS  Google Scholar 

  72. F. Pettit, G. Meier, M. Gell, C. Kartovich, R. Bricknel, W. Kent, and J. Radovich, Oxidation and Hot Corrosion of Superalloys, Superalloys, 1984, 85, p 651–687

    Google Scholar 

  73. N. Mu, High Temperature Oxidation Behavior of [Gamma]-Ni + [Gamma]’-Ni3Al Alloys and Coatings Modified with Pt and Reactive Elements (2007)

  74. Y. Bar-Cohen, High Temperature Materials and Mechanisms, CRC Press, Berlin, 2014

    Google Scholar 

  75. P. Berthod, Kinetics of High Temperature Oxidation and Chromia Volatilization for a Binary Ni-Cr Alloy, Oxid. Met., 2005, 64(3–4), p 235–252

    CAS  Google Scholar 

  76. M. Li, X. Sun, J. Li, Z. Zhang, T. Jin, H. Guan, Z. Hu, Oxidation Behavior of a Single-Crystal Ni-Base Superalloy in Air. I: at 800 and 900 C, Oxid. Met. 59(5–6), 591–605 (2003)

  77. C. Tedmon, Jr., The Effect of Oxide Volatilization on the Oxidation Kinetics of Cr and Fe-Cr Alloys, J. Electrochem. Soc., 1966, 113(8), p 766

    CAS  Google Scholar 

  78. Q. Feng, B. Tryon, L. Carroll, and T. Pollock, Cyclic Oxidation of Ru-Containing Single Crystal Superalloys at 1100 °C, Mater. Sci. Eng. A, 2007, 458(1–2), p 184–194

    Google Scholar 

  79. F. Stott, Developments in Understanding the Mechanisms of Growth of Protective Scales on High-Temperature Alloys, Mater. Charact., 1992, 28(3), p 311–325

    CAS  Google Scholar 

Download references

Acknowledgments

M. Ş. ATAŞ wishes to thank Konya Technical University Academic Staff Training Program (2017-ÖYP-042).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Yildirim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atas, M.S., Yildirim, M. Morphological Development, Coarsening, and Oxidation Behavior of Ni-Al-Nb Superalloys. J. of Materi Eng and Perform 29, 4421–4434 (2020). https://doi.org/10.1007/s11665-020-04926-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-04926-3

Keywords

Navigation