Skip to main content
Log in

Real time terrain identification of autonomous robots using machine learning

  • Regular Paper
  • Published:
International Journal of Intelligent Robotics and Applications Aims and scope Submit manuscript

Abstract

In this project, machine learning based techniques for real time terrain identification of the autonomous robots are investigated. The factors affecting the performance of autonomous robots include nature of trajectories, on-course obstacles, and nature of terrain. The challenges involved in understanding the terrain of autonomous robots are called localization problems. This project investigates a robust classification based machine learning model to identify the terrains of an autonomous robot from a set of input sensor data , which would incorporated as features in the model. The features are selected with respect to the kinematic and dynamic model of differential drive robots. The terrains are classified into 11 classes and the inputs from different sensors are measured and categorized into the respective classes. A total of 49345 readings were taken. Twenty three classification learning methods are evaluated to find the best fitting model that can identify the terrains of robots in real time. Ensemble Subspace KNN classification learning model produced an accuracy of 100 %, observed as the best model for terrain identification. The results are represented using confusion matrix, which shows the relation between original terrains and model predicted terrains , scatter plot that represents the relationship between each features and ROC Curve analyses each sensor input data. The model output can be provided to an intelligent mechanism to control the wheels of robots and improve their performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Almeida, J.S., Marinho, L.B., Mendes Souza, J.W., Assis, E.A., Rebouças Filho, P.P.: Localization system for autonomous mobile robots using machine learning methods and omnidirectional sonar. IEEE Lat. Am. Trans. 16(2), 368–374 (2018)

    Article  Google Scholar 

  • Altuntas, N., Imal, E., Emanet, N., Ozturk, C.N.: Reinforcement learning-based mobile robot navigation. Turk. J. Electr. Eng. Comput. Sci. 24, 1747–1767 (2016)

    Article  Google Scholar 

  • Aynaud, C., Bernay-Angeletti, C., Aufrere, R., Lequievre, L., Debain, C., Chapuis, R.: Real-time multisensor vehicle localization: a geographical information system based approach. IEEE Rob. Autom. Mag. 24(3), 65–74 (2017)

    Article  Google Scholar 

  • Cheng, H., Chen, H., Liu, Y.: Topological indoor localization and navigation for autonomous mobile robot. IEEE Trans. Autom. Sci. Eng. 12(2), 729–738 (2015)

    Article  Google Scholar 

  • Czarnowskia, J., Dabrowskia, A., Maciaś, M., Główkaa, J., Wronab, J.: Technology gaps in human–machine Interfaces for autonomous construction robots. Autom. Constr. 94, 179–190 (2018)

    Article  Google Scholar 

  • Drews, P., Williams, G., Goldfain, B., Theodorou, E.A., Rehg, J.M.: Vision-based high-speed driving with a deep dynamic observer. IEEE Rob. Autom. Lett. 4(2), 1564–1571 (2019)

    Article  Google Scholar 

  • Duckworth, P., Hogg, D.C., Cohn, A.G.: Unsupervised human activity analysis for intelligent mobile robots. Artif. Intell. 270, 67–92 (2019)

    Article  MATH  Google Scholar 

  • DuPont, E.M., Moore, C.A., Collins Jr., E.G., Coyle, E.: Frequency response method for terrain classification in autonomous ground vehicles. Auton. Rob. 24(4), 337–347 (2008)

    Article  Google Scholar 

  • Dutta, A., Dasgupta, P.: Ensemble learning with weak classifiers for fast and reliable unknown terrain classification using mobile robots. IEEE Trans. Syst. Man Cybern. Syst. 47(11), 2933–2944 (2017)

    Article  Google Scholar 

  • Garcıa, J.G., Robertsson, A., Ortega, J.G., Johansson, R.: Sensor fusion for compliant robot motion control. IEEE Trans. Rob. 24(2), 430–441 (2008)

    Article  Google Scholar 

  • Giguere, P., Dudek, G.: A simple tactile probe for surface identification by mobile robots. IEEE Trans. Rob. 27(3), 534–544 (2011)

    Article  Google Scholar 

  • Gonzalez, R., Fiacchini, M., Iagnemma, K.: Slippage prediction for off-road mobile robots via machine learning regression and proprioceptive sensing. Rob. Auton. Syst. 105, 85–93 (2018)

    Article  Google Scholar 

  • Iagnemma, K., Dubowsky, S.: Mobile robots in rough terrain. estimation, motion planning, and control with application to planetary rovers. Springer, Berlin (2004)

    Book  Google Scholar 

  • Kassahun, Y., Yu, B., Tibebu, A.T., Stoyanov, D., Giannarou, S., Metzen, J.H., Vander, P.E.: Surgical robotics beyond enhanced dexterity instrumentation: a survey of machine learning techniques and their role in intelligent and autonomous surgical actions. Int. J. Comput. Assist. Radiol. Surg. 11(4), 553–568 (2015)

    Article  Google Scholar 

  • Kuleshov, A., Bernstein, A., Burnaev, E.: Mobile robot localization via machine learning. Lect. Notes Comput. Sci. 10358, 1–15 (2017)

    Article  Google Scholar 

  • Kunze, L., Hawes, N., Duckett, T., Hanheide, M., Krajnık, T.: Artificial intelligence for long-term robot autonomy: a survey. IEEE Rob. Autom. Lett. 3(4), 4023–4030 (2018)

    Article  Google Scholar 

  • Kuutti, S., Fallah, S., Katsaros, K., Dianati, M., Mccullough, F., Mouzakitis, A.: A survey of the state-of-the-art localization techniques and their potentials for autonomous vehicle applications. IEEE Internet Things J. 5(2), 829–846 (2018)

    Article  Google Scholar 

  • Li, B., Liu, H., Su, W.: Topology optimization techniques for mobile robot path planning. Appl. Soft Comput. 78, 528–544 (2019)

    Article  Google Scholar 

  • Luo, S., Bimbo, J., Dahiya, R., Liu, H.: Robotic tactile perception of object properties: a review. Mechatronics 48, 54–67 (2017)

    Article  Google Scholar 

  • Mac, T.T., Copot, C., Keyser, R.D., Tran, T.D., Vu, T.: MIMO fuzzy control for autonomous mobile robot. J. Autom. Control Eng. 4(1), 65–70 (2016)

  • Manduchi, R., Castano, A., Talukder, A., Matthies, L.: Obstacle detection and terrain classification for autonomous off-road navigation. Auton. Rob. 18, 81–102 (2005)

    Article  Google Scholar 

  • Manko, S.V., Lokhin, V.M., Diane, S.A.K., Panin, A.S.: Autonomous mobile robot self-learning in motion planning problem. Int. J. Mech. Eng. Rob. Res. 4(3), 238 (2015)

    Google Scholar 

  • Pérez, L., Rodríguez, Í., Rodríguez, N., Usamentiaga, R., García, D.F.: Robot guidance using machine vision techniques in industrial environments: a comparative review. Sensors (2016). https://doi.org/10.3390/s16030335

    Article  Google Scholar 

  • Roy, S., Nandy, S., Kar, I.N., Ray, R., Shome, S.N.: Robust digital robust control of nonholonomic wheeled mobile robot with past information: theory and experiment. J. Syst. Control Eng. 23(3), 178–188 (2017)

    Google Scholar 

  • Samuel, M., Hussein, M., Binti, M.: A review of some pure-pursuit based path tracking techniques for control of autonomous vehicle. Int. J. Comput. Appl. 135(1), 0975–8887 (2016)

    Google Scholar 

  • Singh, R., Bera, T.K.: Fuzzy logic controller for obstacle avoidance of mobile robot. Int. J. Nonlinear Sci. Numer. Simul. 20(1), 51–62 (2018)

    Article  MATH  Google Scholar 

  • Srebro, A.: A self-tuning fuzzy PD controller for a wheeled mobile robot operating in the presence of faults. Chall. Mod. Technol. 2(1), (2011)

  • Tai, L., Li, S., Liu, M.: Autonomous exploration of mobile robots through deep neural networks. J. Adv. Rob. Syst., Int (2017). https://doi.org/10.1177/1729881417703571

    Book  Google Scholar 

  • Thrun, S.: Bayesian landmark learning for mobile robot localization. Mach. Learn. 33, 41–76 (1998)

    Article  MATH  Google Scholar 

  • Tiep, D.K., Leel, K., Im, D.Y., Kwak, B., Ryoo, Y.J.: Design of fuzzy-PID controller for path tracking of mobile robot with differential drive. Int. J. Fuzzy Log. Intell. Syst. 18(3), 220–228 (2018)

    Article  Google Scholar 

  • Varghese, A.M., Jisha, V.R.: Motion planning and control of an autonomous mobile robot. International CET conference on control, communication, and computing (IC4) (2018)

Download references

Acknowledgements

The financial support of APJ Abdul Kalam Technological University, Kerala (CERD Research Seed Money) Grant No: KTU/RESEARCH 2/3894/2018 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. Harinarayanan Nampoothiri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nampoothiri, M.G.H., Anand, P.S.G. & Antony, R. Real time terrain identification of autonomous robots using machine learning. Int J Intell Robot Appl 4, 265–277 (2020). https://doi.org/10.1007/s41315-020-00142-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41315-020-00142-3

Keywords

Navigation