Skip to main content

Advertisement

Log in

MiR-124a Mediates the Impairment of Intestinal Epithelial Integrity by Targeting Aryl Hydrocarbon Receptor in Crohn’s Disease

  • Original Article
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Growing evidence suggested that microRNAs (miRNAs) contributed to the progression of Crohn’s disease (CD), but the exact physiological functions of many miRNAs in CD patients still remain illusive. In this study, we explore the potent pathogenicity of miRNAs in CD. Expressions of miRNAs and aryl hydrocarbon receptor (AHR) protein were determined in the colitic colon of 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced colitis mice and CD patients. Colitis was induced in wild-type (WT), miR-124a overexpression (miR-124a-Nju), and AHR knockout (AHR−/−) mice. Intestinal barrier function was evaluated in colitis mice and Caco2 monolayers. There was a negative relationship between miR-124a and AHR protein in inflamed colons from CD patients. MiR-124a-Nju and AHR−/− mice treated with TNBS had more severe intestinal inflammation than WT mice. Both miR-124a-Nju mice and AHR−/− mice underwent evident intestinal barrier destruction, and anti-miR-124a administration could reverse this dysfunction in miR-124a-Nju mice but not in AHR−/− mice. In vitro studies revealed that miR-124a mimics downregulated the expression of AHR and tight junction proteins and induced hyperpermeability by increasing miR-124a expression, which was abrogated by miR-124a inhibitor and AHR antagonist FICZ. This study suggests that miR-124a can induce intestinal inflammation and cause intestinal barrier dysfunction by supressing AHR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CD:

Crohn’s disease

AHR:

Aryl hydrocarbon receptor

bHLH:

Basic helix-loop-helix

IBD:

Inflammatory bowel disease

IL-22:

Interleukin-22

DSS:

Dextran dulfate dodium

IECs:

Intestinal epithelial cells

LP:

Lamina propria

TJ:

Tight junction

miRNAs:

MicroRNAs

TNBS:

2,4,6-Trinitrobenzenesulfonic acid

WT:

Wild type

NC:

Normal controls

SPF:

Specific pathogen free

PEI:

Polyetherimide

FBS:

Fetal bovine serum

DMEM:

Dulbecco’s modified Eagle medium

TNF-α:

Tumor necrosis factor-α

DAI:

Disease activity index

FITC:

Fluorescein isothiocyanate

TEER:

Transepithelial electrical resistance

SEM:

Standard error of the mean

References

  1. Baumgart, D.C., and S.R. Carding. 2007. Inflammatory bowel disease: cause and immunobiology. Lancet 369 (9573): 1627–1640.

    Article  CAS  Google Scholar 

  2. Loftus, E.V., Jr. 2004. Clinical epidemiology of inflammatory bowel disease: incidence, prevalence, and environmental influences. Gastroenterology 126 (6): 1504–1517.

    Article  Google Scholar 

  3. Hollander, D. 2013. Intestinal permeability barrier in Crohn's disease: the difficulty in shifting the paradigm. Digestive Diseases and Sciences 58 (7): 1827–1829.

    Article  Google Scholar 

  4. Libertucci, J., U. Dutta, S. Kaur, J. Jury, L. Rossi, M.E. Fontes, M.S. Shajib, W.I. Khan, M.G. Surette, E.F. Verdu, and D. Armstrong. 2018. Inflammation-related differences in mucosa-associated microbiota and intestinal barrier function in colonic Crohn's disease. American Journal of Physiology. Gastrointestinal and Liver Physiology 315: G420–G431.

    Article  CAS  Google Scholar 

  5. Franchimont, D., S. Vermeire, H. El Housni, M. Pierik, K. Van Steen, T. Gustot, E. Quertinmont, M. Abramowicz, A. Van Gossum, J. Deviere, and P. Rutgeerts. 2004. Deficient host-bacteria interactions in inflammatory bowel disease? The toll-like receptor (TLR)-4 Asp299gly polymorphism is associated with Crohn's disease and ulcerative colitis. Gut 53 (7): 987–992.

    Article  CAS  Google Scholar 

  6. Orholm, M., V. Binder, T.I. Sorensen, L.P. Rasmussen, and K.O. Kyvik. 2000. Concordance of inflammatory bowel disease among Danish twins. Results of a nationwide study. Scandinavian Journal of Gastroenterology 35 (10): 1075–1081.

    Article  CAS  Google Scholar 

  7. Zheng, J.J., X.S. Zhu, Z. Huangfu, Z.X. Gao, Z.R. Guo, and Z. Wang. 2005. Crohn's disease in mainland China: a systematic analysis of 50 years of research. Chinese Journal of Digestive Diseases 6 (4): 175–181.

    Article  Google Scholar 

  8. Chen, G., X. Ran, B. Li, Y. Li, D. He, B. Huang, S. Fu, J. Liu, and W. Wang. 2018. Sodium butyrate inhibits inflammation and maintains epithelium barrier integrity in a TNBS-induced inflammatory bowel disease mice model. EBioMedicine 30: 317–325.

    Article  Google Scholar 

  9. Chang, J., R.W. Leong, V.C. Wasinger, M. Ip, M. Yang, and T.G. Phan. 2017. Impaired intestinal permeability contributes to ongoing bowel symptoms in patients with inflammatory bowel disease and mucosal healing. Gastroenterology 153 (3): 723–731 e1.

    Article  Google Scholar 

  10. Lamas, B., J.M. Natividad, and H. Sokol. 2018. Aryl hydrocarbon receptor and intestinal immunity. Mucosal Immunology 11: 1024–1038.

    Article  CAS  Google Scholar 

  11. Kewley, R.J., M.L. Whitelaw, and A. Chapman-Smith. 2004. The mammalian basic helix-loop-helix/PAS family of transcriptional regulators. The International Journal of Biochemistry & Cell Biology 36 (2): 189–204.

    Article  CAS  Google Scholar 

  12. Veldhoen, M., K. Hirota, A.M. Westendorf, J. Buer, L. Dumoutier, J.C. Renauld, and B. Stockinger. 2008. The aryl hydrocarbon receptor links TH17-cell-mediated autoimmunity to environmental toxins. Nature 453 (7191): 106–109.

    Article  CAS  Google Scholar 

  13. Arsenescu, R., V. Arsenescu, J. Zhong, M. Nasser, R. Melinte, R.W. Dingle, H. Swanson, and W.J. de Villiers. 2011. Role of the xenobiotic receptor in inflammatory bowel disease. Inflammatory Bowel Diseases 17 (5): 1149–1162.

    Article  Google Scholar 

  14. Monteleone, I., A. Rizzo, M. Sarra, G. Sica, P. Sileri, L. Biancone, T.T. MacDonald, F. Pallone, and G. Monteleone. 2011. Aryl hydrocarbon receptor-induced signals up-regulate IL-22 production and inhibit inflammation in the gastrointestinal tract. Gastroenterology 141 (1): 237–248 48 e1.

    Article  CAS  Google Scholar 

  15. Li, Y., S. Innocentin, D.R. Withers, N.A. Roberts, A.R. Gallagher, E.F. Grigorieva, C. Wilhelm, and M. Veldhoen. 2011. Exogenous stimuli maintain intraepithelial lymphocytes via aryl hydrocarbon receptor activation. Cell 147 (3): 629–640.

    Article  CAS  Google Scholar 

  16. Qiu, J., X. Guo, Z.M. Chen, L. He, G.F. Sonnenberg, D. Artis, Y.X. Fu, and L. Zhou. 2013. Group 3 innate lymphoid cells inhibit T-cell-mediated intestinal inflammation through aryl hydrocarbon receptor signaling and regulation of microflora. Immunity 39 (2): 386–399.

    Article  CAS  Google Scholar 

  17. Yu, M., Q. Wang, Y. Ma, L. Li, K. Yu, Z. Zhang, G. Chen, X. Li, W. Xiao, P. Xu, and H. Yang. 2018. Aryl hydrocarbon receptor activation modulates intestinal epithelial barrier function by maintaining tight junction integrity. International Journal of Biological Sciences 14 (1): 69–77.

    Article  CAS  Google Scholar 

  18. Makeyev, E.V., and T. Maniatis. 2008. Multilevel regulation of gene expression by microRNAs. Science 319 (5871): 1789–1790.

    Article  CAS  Google Scholar 

  19. Momen-Heravi, F., and S. Bala. 2018. miRNA regulation of innate immunity. Journal of Leukocyte Biology 103: 1205–1217.

    Article  CAS  Google Scholar 

  20. Ceribelli, A., M. Satoh, and E.K. Chan. 2012. MicroRNAs and autoimmunity. Current Opinion in Immunology 24 (6): 686–691.

    Article  CAS  Google Scholar 

  21. Zhao, Y., T. Ma, W. Chen, Y. Chen, M. Li, L. Ren, J. Chen, R. Cao, Y. Feng, H. Zhang, and R. Shi. 2016. MicroRNA-124 promotes intestinal inflammation by targeting aryl hydrocarbon receptor in Crohn's disease. Journal of Crohn's & Colitis 10 (6): 703–712.

    Article  Google Scholar 

  22. Neurath, M.F., I. Fuss, B.L. Kelsall, E. Stuber, and W. Strober. 1995. Antibodies to interleukin 12 abrogate established experimental colitis in mice. The Journal of Experimental Medicine 182 (5): 1281–1290.

    Article  CAS  Google Scholar 

  23. Huang, Z., T. Shi, Q. Zhou, S. Shi, R. Zhao, H. Shi, L. Dong, C. Zhang, K. Zeng, J. Chen, and J. Zhang. 2014. miR-141 regulates colonic leukocytic trafficking by targeting CXCL12beta during murine colitis and human Crohn's disease. Gut 63 (8): 1247–1257.

    Article  CAS  Google Scholar 

  24. Thorlacius-Ussing, G., B. Schnack Nielsen, V. Andersen, K. Holmstrom, and A.E. Pedersen. 2017. Expression and localization of miR-21 and miR-126 in mucosal tissue from patients with inflammatory bowel disease. Inflammatory Bowel Diseases 23 (5): 739–752.

    Article  Google Scholar 

  25. Kihara, N., S.G. de la Fuente, K. Fujino, T. Takahashi, T.N. Pappas, and C.R. Mantyh. 2003. Vanilloid receptor-1 containing primary sensory neurones mediate dextran sulphate sodium induced colitis in rats. Gut 52 (5): 713–719.

    Article  CAS  Google Scholar 

  26. Dawson, P.A., S. Huxley, B. Gardiner, T. Tran, J.L. McAuley, S. Grimmond, M.A. McGuckin, and D. Markovich. 2009. Reduced mucin sulfonation and impaired intestinal barrier function in the hyposulfataemic NaS1 null mouse. Gut 58 (7): 910–919.

    Article  CAS  Google Scholar 

  27. Ma, T.Y., N.T. Hoa, D.D. Tran, V. Bui, A. Pedram, S. Mills, and M. Merryfield. 2000. Cytochalasin B modulation of Caco-2 tight junction barrier: role of myosin light chain kinase. American Journal of Physiology. Gastrointestinal and Liver Physiology 279 (5): G875–G885.

    Article  CAS  Google Scholar 

  28. Cario, E., G. Gerken, and D.K. Podolsky. 2004. Toll-like receptor 2 enhances ZO-1-associated intestinal epithelial barrier integrity via protein kinase C. Gastroenterology 127 (1): 224–238.

    Article  CAS  Google Scholar 

  29. Tian, Y., J. Xu, Y. Li, R. Zhao, S. Du, C. Lv, W. Wu, R. Liu, X. Sheng, Y. Song, X. Bi, G. Li, M. Li, X. Wu, P. Lou, H. You, W. Cui, J. Sun, J. Shuai, F. Ren, B. Zhang, M. Guo, X. Hou, K. Wu, L. Xue, H. Zhang, M.V. Plikus, Y. Cong, C.J. Lengner, Z. Liu, and Z. Yu. 2019. MicroRNA-31 reduces inflammatory signaling and promotes regeneration in colon epithelium, and delivery of mimics in microspheres reduces colitis in mice. Gastroenterology 156 (8): 2281–2296 e6.

    Article  CAS  Google Scholar 

  30. He, C., T. Yu, Y. Shi, C. Ma, W. Yang, L. Fang, M. Sun, W. Wu, F. Xiao, F. Guo, M. Chen, H. Yang, J. Qian, Y. Cong, and Z. Liu. 2017. MicroRNA 301A promotes intestinal inflammation and colitis-associated cancer development by inhibiting BTG1. Gastroenterology 152 (6): 1434–1448 e15.

    Article  CAS  Google Scholar 

  31. Makeyev, E.V., J. Zhang, M.A. Carrasco, and T. Maniatis. 2007. The MicroRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Molecular Cell 27 (3): 435–448.

    Article  CAS  Google Scholar 

  32. Visvanathan, J., S. Lee, B. Lee, J.W. Lee, and S.K. Lee. 2007. The microRNA miR-124 antagonizes the anti-neural REST/SCP1 pathway during embryonic CNS development. Genes & Development 21 (7): 744–749.

    Article  CAS  Google Scholar 

  33. Ponomarev, E.D., T. Veremeyko, N. Barteneva, A.M. Krichevsky, and H.L. Weiner. 2011. MicroRNA-124 promotes microglia quiescence and suppresses EAE by deactivating macrophages via the C/EBP-alpha-PU.1 pathway. Nature Medicine 17 (1): 64–70.

    Article  CAS  Google Scholar 

  34. Nakamachi, Y., S. Kawano, M. Takenokuchi, K. Nishimura, Y. Sakai, T. Chin, R. Saura, M. Kurosaka, and S. Kumagai. 2009. MicroRNA-124a is a key regulator of proliferation and monocyte chemoattractant protein 1 secretion in fibroblast-like synoviocytes from patients with rheumatoid arthritis. Arthritis and Rheumatism 60 (5): 1294–1304.

    Article  Google Scholar 

  35. Koukos, G., C. Polytarchou, J.L. Kaplan, A. Morley-Fletcher, B. Gras-Miralles, E. Kokkotou, M. Baril-Dore, C. Pothoulakis, H.S. Winter, and D. Iliopoulos. 2013. MicroRNA-124 regulates STAT3 expression and is down-regulated in colon tissues of pediatric patients with ulcerative colitis. Gastroenterology 145 (4): 842–852 e2.

    Article  CAS  Google Scholar 

  36. Schmidt, J.V., and C.A. Bradfield. 1996. Ah receptor signaling pathways. Annual Review of Cell and Developmental Biology 12: 55–89.

    Article  CAS  Google Scholar 

  37. Denison, M.S., and S.R. Nagy. 2003. Activation of the aryl hydrocarbon receptor by structurally diverse exogenous and endogenous chemicals. Annual Review of Pharmacology and Toxicology 43: 309–334.

    Article  CAS  Google Scholar 

  38. Han, B., B. Sheng, Z. Zhang, A. Pu, J. Yin, Q. Wang, K. Yang, L. Sun, M. Yu, Y. Qiu, W. Xiao, and H. Yang. 2016. Aryl hydrocarbon receptor activation in intestinal obstruction ameliorates intestinal barrier dysfunction via suppression of MLCK-MLC phosphorylation pathway. Shock 46 (3): 319–328.

    Article  CAS  Google Scholar 

  39. Liu, Z., L. Li, W. Chen, Q. Wang, W. Xiao, Y. Ma, B. Sheng, X. Li, L. Sun, M. Yu, and H. Yang. 2018. Aryl hydrocarbon receptor activation maintained the intestinal epithelial barrier function through Notch1 dependent signaling pathway. International Journal of Molecular Medicine 41 (3): 1560–1572.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Xuerui Zhang for his excellent technical assistance.

Funding

This study was supported by grants from the National Natural Science Foundation of China (81770553 and 81470827), Jiangsu Province’s Key Medical Talents Program (ZDRCB2016001), and Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX18_1484).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongjie Zhang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Previous presentations

An abstract of the study’s results was invited as an oral presentation at the 2019 United European Gastroenterology Week in Barcelona. The abstract was also chosen as a postpresentation at the 6th Annual Meeting of Asian Organization for Crohn’s & Colitis, which was published in Journal of Digestive Diseases banner.

Electronic Supplementary Material

ESM 1

(DOCX 14 kb)

ESM 2

Mice were enema treatment using anti-miR-124a 12 h after induction of colitis. Frozen colon sections were obtained from mice with Cy3 anti-miR-124a enema treatment and stained with markers of intestinal epithelia cell [red, Cy3 anti-miR-124a; green, pan cytokeratin [PCK]; blue, DAPI nuclear staining]. Scale bar = 50 μm (PNG 932 kb)

High resolution image (TIF 1457 kb)

ESM 3

Effect of increasing concentrations of TNF-α (0, 10, 25, 50, and 100 ng/ml) on Caco-2 epithelial resistance [Ω•cm2] for increasing time periods (0-48 h). Results are presented as mean ± SEM. *P < 0.05 (PNG 123 kb)

High resolution image (TIF 192 kb)

ESM 4

The examination of the level of miR-124a in Caco-2 cells after transfected with miR-124a mimic, pre-scramble, miR-124a inhibitor and anti-scramble as well as stimulated with TNF-α. (A) qRT-PCR analysis of miR-124a expression in Caco-2 cells in different groups. (B) AHR mRNA expression was determined by qRT-PCR analysis in different groups. Results are presented as mean ± SEM. *P < 0.05; *** P < 0.001 (PNG 145 kb)

High resolution image (TIF 358 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Li, J., Ma, J. et al. MiR-124a Mediates the Impairment of Intestinal Epithelial Integrity by Targeting Aryl Hydrocarbon Receptor in Crohn’s Disease. Inflammation 43, 1862–1875 (2020). https://doi.org/10.1007/s10753-020-01259-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-020-01259-0

KEY WORDS

Navigation