Skip to main content
Log in

Optimization of Biosynthesis Conditions for the Production of Exopolysaccharides by Lactobacillus plantarum SP8 and the Exopolysaccharides Antioxidant Activity Test

  • Original research article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Lactobacillus plantarum SP8, isolated from traditional Chinese pickle juice, was utilized for the production of exopolysaccharides (EPSs), but the EPS yield was low under normal MRS medium. The single factor experiment and response surface methodology were used to optimize the medium components and culture conditions and the optimal conditions for EPS production were successfully obtained. Results showed that the optimum condition was glucose 22 g/L, yeast extract 30 g/L, fermentation temperature 35.6 °C, fermentation time 22 h and the theoretical EPS yield was 282.494 mg/L. The results were similar to the actual yield, 280.105 mg/L. By optimizing the culture conditions, the yield of L. plantarum SP8 EPS was improved by nearly 19 times. In the gas chromatography analysis, it was found that L. plantarum SP8 EPS consisted of d-rhamnose, arabinose, galactose, and d-acetylglucosamine, but glucose was not included, which was quite different from the reported heteropolysaccharide component of Lactobacillus. Furthermore, the antioxidant activity of L. plantarum SP8 EPS was evaluated with the in vitro scavenging abilities on DPPH·, \({\text{O}}_{2}^{ - }\) and ·OH. The in vitro antioxidant activity study indicated that L. plantarum SP8 EPS possessed certain antioxidant activity. All results demonstrated the potential of L. plantarum SP8 in the food and dairy industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zannini E, Waters DM, Coffey A, Arendt EK (2016) Production, properties, and industrial food application of lactic acid bacteria-derived exopolysaccharides. Appl Microbiol Biotechnol 100:1121–1135. https://doi.org/10.1007/s00253-015-7172-2

    Article  CAS  PubMed  Google Scholar 

  2. Montgomery R (2004) Development of biobased products. Bioresour Technol 91:1–29. https://doi.org/10.1016/S0960-8524(03)00154-8

    Article  CAS  PubMed  Google Scholar 

  3. Doleyres Y, Schaub L, Lacroix C (2005) Comparison of the functionality of exopolysaccharides produced in situ or added as bioingredients on yogurt properties. J Dairy Sci 88:4146–4156. https://doi.org/10.3168/jds.S0022-0302(05)73100-3

    Article  CAS  PubMed  Google Scholar 

  4. Kanmani P, Kumar RS, Yuvaraj N, Paari KA, Pattukumar V, Arul V (2011) Production and purification of a novel exopolysaccharide from lactic acid bacterium Streptococcus phocae PI80 and its functional characteristics activity in vitro. Bioresour Technol 102:4827–4833. https://doi.org/10.1016/j.biortech.2010.12.118

    Article  CAS  PubMed  Google Scholar 

  5. Liu CH, Lu J, Lu LL, Liu YH, Wang FS, Xiao M (2010) Isolation, structural characterization and immunological activity of an exopolysaccharide produced by Bacillus licheniformis 8–37-0-1. Bioresour Technol 101:5528–5533. https://doi.org/10.1016/j.biortech.2010.01.151

    Article  CAS  PubMed  Google Scholar 

  6. Nwodo UU, Green E, Okoh AI (2012) Bacterial exopolysaccharides: functionality and prospects. Int J Mol Sci 13:14002–14015. https://doi.org/10.3390/ijms131114002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Welman AD, Maddox IS (2003) Exopolysaccharides from lactic acid bacteria: perspectives and challenges. Trends Biotechnol 21:269–274. https://doi.org/10.1016/s0167-7799(03)00107-0

    Article  CAS  PubMed  Google Scholar 

  8. Wang X, Shao CG, Liu L, Guo X, Xu YM, Lu X (2017) Optimization, partial characterization and antioxidant activity of an exopolysaccharide from Lactobacillus plantarum KX041. Int J Biol Macromol 103:1173–1184. https://doi.org/10.1016/j.ijbiomac.2017.05.118

    Article  CAS  PubMed  Google Scholar 

  9. Othman NZ, Mohd Din ARJ, Mohammad Z, Rosli MA, Sarmidi MR (2018) Statistical optimization of medium compositions for high cell mass and exopolysaccharide production by Lactobacillus plantarum ATCC 8014. Appl Food Biotech 5:87–96. https://doi.org/10.22037/afb.v5i2.19299

    Article  CAS  Google Scholar 

  10. Si TZ, Liu CJ, Qin XM, Li XR, Luo YY, Yang E (2017) Optimization of Biosynthesis Conditions for the Production of Exopolysaccharides by Lactobacillus plantarum YM-2. Food Sci 38:24–30. https://doi.org/10.7506/spkx1002-6630-201710005

    Article  Google Scholar 

  11. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356. https://doi.org/10.1021/ac60111a017

    Article  CAS  Google Scholar 

  12. Mahapatra S, Banerjee D (2016) Production and structural elucidation of exopolysaccharide from endophytic Pestalotiopsis sp BC55. Int J Biol Macromol 82:182–191. https://doi.org/10.1016/j.ijbiomac.2015.11.035

    Article  CAS  PubMed  Google Scholar 

  13. Belhaj D, Frikha D, Athmouni K, Jerbi B, Ahmed MB, Bouallagui Z, Kallel M, Maalej S, Zhou J, Ayadi H (2017) Box-Behnken design for extraction optimization of crude polysaccharides from Tunisian Phormidium versicolor cyanobacteria (NCC 466): Partial characterization, in vitro antioxidant and antimicrobial activities. Int J Biol Macromol 105:1501–1510. https://doi.org/10.1016/j.ijbiomac.2017.06.046

    Article  CAS  PubMed  Google Scholar 

  14. Kang XJ, Qu JS (2006) Analysis of Angelica dahurica polysaccharide by gas chromatography. Chin J Pharm Anal 34:533–535. https://doi.org/10.1016/S1872-1508(06)60036-3

    Article  CAS  Google Scholar 

  15. Zhang YP, Yu YZ, Zhang H (2009) Analysis of monosaccharides in Radix Rehmanniae by GC. Chin J Chin Mater Med 34:419. https://doi.org/10.3321/j.issn:1001-5302.2009.04.012

    Article  CAS  Google Scholar 

  16. Wang X, Zhang LH, Wu JL, Xu WQ, Wang XQ, Lü X (2017) Improvement of simultaneous determination of neutral monosaccharides and uronic acids by gas chromatography. Food Chem 220:198–207. https://doi.org/10.1016/j.foodchem.2016.10.008

    Article  CAS  PubMed  Google Scholar 

  17. Wang X, Lu X (2014) Characterization of pectic polysaccharides extracted from apple pomace by hot-compressed water. Carbohydr Polym 102:174–184. https://doi.org/10.1016/j.carbpol.2013.11.012

    Article  CAS  PubMed  Google Scholar 

  18. Yin JY, Nie SP, Zhou C, Wan Y, Xie MY (2010) Chemical characteristics and antioxidant activities of polysaccharide purified from the seeds of Plantago asiatica L. J Sci Food Agric 90:210–217. https://doi.org/10.1002/jsfa.3793

    Article  CAS  PubMed  Google Scholar 

  19. Xiang XL, Yang LY, Hua S, Li W, Sun Y, Ma H, Zhang JS, Zeng XX (2008) Determination of oligosaccharide contents in 19 cultivars of chickpea (Cicer arietinum L) seeds by high performance liquid chromatography. Food Chem 111:215–219. https://doi.org/10.1016/j.foodchem.2008.03.039

    Article  CAS  Google Scholar 

  20. Pan DD, Mei XM (2010) Antioxidant activity of an exopolysaccharide purified from Lactococcus lactis subsp lactis 12. Carbohydr Polym 80:908–914. https://doi.org/10.1016/j.carbpol.2010.01.005

    Article  CAS  Google Scholar 

  21. Mozzi F, Rollán G, de Giori GS, de Valdez GF (2001) Effect of galactose and glucose on the exopolysaccharide production and the activities of biosynthetic enzymes in Lactobacillus casei CRL 87. J Appl Microbiol 91:160–167. https://doi.org/10.1046/j.1365-2672.2001.01367.x

    Article  CAS  PubMed  Google Scholar 

  22. Gamar L, Blondeau K, Simonet JM (1997) Physiological approach to extracellular polysaccharide production by Lactobacillus rhamnosus strain C83. J Appl Microbiol 83:281–287. https://doi.org/10.1046/j.1365-2672.1997.00228.x

    Article  CAS  Google Scholar 

  23. Petry S, Furlan S, Crepeau MJ, Cerning J, Desmazeaud M (2000) Factors affecting exocellular polysaccharide production by Lactobacillus delbrueckii subsp bulgaricus grown in a chemically defined medium. Appl Environ Microbiol 66:3427–3431. https://doi.org/10.1128/Aem.66.8.3427-3431.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Grobben GJ, van Casteren WHM, Schols HA, Oosterveld A, Sala G, Smith MR, Sikkema J, de Bont JAM (1997) Analysis of the exopolysaccharides produced by Lactobacillus delbrueckii subsp. bulgaricus NCFB 2772 grown in continuous culture on glucose and fructose. Appl Microbiol Biotechnol 48:516–521. https://doi.org/10.1007/s002530051089

    Article  CAS  Google Scholar 

  25. Feng MQ, Xing JL, Zhang Q, Li CC, Chen XH, Li W, Dong MS (2011) Optimization of Fermentation Conditions for Production of Exopolysaccharides by Lactobacillus plantarum 70810. Food Sci 23:215–219

    Google Scholar 

  26. Gancel F, Novel G (1994) Exopolysaccharide Production by Streptococcus salivarius ssp. thermophilus Cultures. 1. Conditions of production J Dairy Sci 77:689–695. https://doi.org/10.3168/jds.S0022-0302(94)77000-4

    Article  CAS  Google Scholar 

  27. Serrato RV, Sassaki GL, Gorin PAJ, Cruz LM, Pedrosa FO, Choudhury B, Carlson RW, Lacornini M (2008) Structural characterization of an acidic exoheteropolysaccharide produced by the nitrogen-fixing bacterium Burkholderia tropica. Carbohydr Polym 73:564–572. https://doi.org/10.1016/j.carbpol.2007.12.027

    Article  CAS  PubMed  Google Scholar 

  28. Hu PP, Song W, Shan YJ, Du M, Zhang LW (2014) Factors contributing to the yield of exopolysaccharide by lactic acid bacteria. Food Sci Technol 39:31–37. https://doi.org/10.13684/j.cnki.spkj.2014.09.008

    Article  CAS  Google Scholar 

  29. Kim SW, Hwang HJ, Xu CP, Na YS, Song SK, Yun JW (2002) Influence of nutritional conditions on the mycelial growth and exopolysaccharide production in Paecilomyces sinclairii. Lett Appl Microbiol 34:389–393. https://doi.org/10.1046/j.1472-765X.2002.01105.x

    Article  CAS  PubMed  Google Scholar 

  30. Sirajunnisa AR, Vijayagopal V, Sivaprakash B, Viruthagiri T, Surendhiran D (2016) Optimization, kinetics and antioxidant activity of exopolysaccharide produced from rhizosphere isolate, Pseudomonas fluorescens CrN6. Carbohydr Polym 135:35–43. https://doi.org/10.1016/j.carbpol.2015.08.080

    Article  CAS  PubMed  Google Scholar 

  31. Li W, Ji J, Rui X, Yu JJ, Tang WZ, Chen XH, Jiang M, Dong MS (2014) Production of exopolysaccharides by Lactobacillus helveticus MB2-1 and its functional characteristics in vitro. LWT Food Sci Technol 59:732–739. https://doi.org/10.1016/j.lwt.2014.06.063

    Article  CAS  Google Scholar 

  32. Cerning J, Bouillanne C, Landon M, Desmazeaud M (1992) Isolation and characterization of exopolysaccharides from slime-forming mesophilic lactic acid bacteria. J Dairy Sci 75:692–699. https://doi.org/10.3168/jds.S0022-0302(92)77805-9

    Article  CAS  Google Scholar 

  33. Duboc P, Mollet B (2001) Applications of exopolysaccharides in the dairy industry. Int Dairy J 11:759–768. https://doi.org/10.1016/S0958-6946(01)00119-4

    Article  CAS  Google Scholar 

  34. Yeesang C, Chanthachum S, Cheirsilp B (2008) Sago starch as a low-cost carbon source for exopolysaccharide production by Lactobacillus kefiranofaciens. World J Microbiol Biotechnol 24:1195–1201. https://doi.org/10.1007/s11274-007-9592-3

    Article  CAS  Google Scholar 

  35. Xu Rh, Ma SM, Wang Y, Liu LS, Li PL (2010) Screening, identification and statistic optimization of a novel exopolysaccharide producing Lactobacillus paracasei HCT. Afr J Microbiol Res 4:783–795. https://doi.org/10.1016/j.enzmictec.2009.12.017

    Article  CAS  Google Scholar 

  36. Ruasmadiedo P, Hugenholtz J, Zoon P (2002) An overview of the functionality of exopolysaccharides produced by lactic acid bacteria. Int Dairy J 12:163–171. https://doi.org/10.1016/S0958-6946(01)00160-1

    Article  CAS  Google Scholar 

  37. Wang J, Zhao X, Yang YW, Zhao AM, Yang ZN (2015) Characterization and bioactivities of an exopolysaccharide produced by Lactobacillus plantarum YW32. Int J Biol Macromol 74:119–126. https://doi.org/10.1016/j.ijbiomac.2014.12.006

    Article  CAS  PubMed  Google Scholar 

  38. Wang J, Zhao X, Tian Z, Yang YW, Yang ZN (2015) Characterization of an exopolysaccharide produced by Lactobacillus plantarum YW11 isolated from Tibet Kefir. Carbohydr Polym 125:16–25. https://doi.org/10.1016/j.carbpol.2015.03.003

    Article  CAS  PubMed  Google Scholar 

  39. Zhang L, Liu CH, Li D, Zhao YJ, Zhang X, Zeng XP, Yang ZN, Li SY (2013) Antioxidant activity of an exopolysaccharide isolated from Lactobacillus plantarum C88. Int J Biol Macromol 54:270–275. https://doi.org/10.1016/j.ijbiomac.2012.12.037

    Article  CAS  PubMed  Google Scholar 

  40. Li JY, Jin MM, Meng J, Gao SM, Lu RR (2013) Exopolysaccharide from Lactobacillus planterum LP6: Antioxidation and the effect on oxidative stress. Carbohydr Polym 98:1147–1152. https://doi.org/10.1016/j.carbpol.2013.07.027

    Article  CAS  PubMed  Google Scholar 

  41. Rocha J, Popescu AO, Borges P, Mil-Homens D, Moreira LM, Sa-Correia I, Fialho AM, Frazao C (2011) Structure of Burkholderia cepacia UDP-glucose dehydrogenase (UGD) BceC and role of Tyr10 in final hydrolysis of UGD thioester intermediate. J Bacteriol 193:3978–3987. https://doi.org/10.1128/jb.01076-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gulcin I (2006) Antioxidant and antiradical activities of L-carnitine. Life Sci 78:803-811. https://doi.org/10.1016/j.lfs.2005.05.103

    Article  CAS  Google Scholar 

  43. Guo YX, Pan DD, Sun YY, Xin LY, Li H, Zeng XQ (2013) Antioxidant activity of phosphorylated exopolysaccharide produced by Lactococcus lactis subsp lactis. Carbohydr Polym 97:849–854. https://doi.org/10.1016/j.carbpol.2013.06.024

    Article  CAS  PubMed  Google Scholar 

  44. Liu J, Yang S, Chen YY, Li Y, Li XD, S YX, (2017) Optimized condition and antioxidant properties of exopoly saccharides by Lactobacillus paracasei VL8. J Chin Inst Food Sci Tech 17:82–89. https://doi.org/10.16429/j.1009-7848.2017.05.011

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by The National Natural Science Foundation of China (31560447) and The Analysis and Testing Foundation of Kunming University of Science and Technology ( 2016T20110135).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to En Yang.

Ethics declarations

Conflict of interest

No conflict of interest declared.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Zhao, B., Liu, CJ. et al. Optimization of Biosynthesis Conditions for the Production of Exopolysaccharides by Lactobacillus plantarum SP8 and the Exopolysaccharides Antioxidant Activity Test. Indian J Microbiol 60, 334–345 (2020). https://doi.org/10.1007/s12088-020-00865-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-020-00865-8

Keywords

Navigation