Skip to main content
Log in

Analysing Flammability Characteristics of Green Biocomposites: An Overview

  • Published:
Fire Technology Aims and scope Submit manuscript

Abstract

Stringent fire safety regulations have limited the use of green biocomposites in practical applications due to vulnerability of their constituents to heat and fire. To counter this weakness, several flame-retardant treatments and techniques have been introduced, such as halogenated and non-halogenated flame-retardants, nano fillers, layered silicates, copolymerization, grafting, and synergistic use of natural fibre and fire retardant. While the physical and chemical treatment of green biocomposites has improved their heat resistance to some extent, these materials still fail to comply with strict fire safety regulations such as the Federal Motor Vehicle Safety Standard No. 302 (FMVSS 302) and the code of Federal Aviation Regulation 25.853 applicable in the automotive and aerospace industry, respectively. Therefore, an in-depth study of thermal decomposition and fire behaviour of green biocomposites is inevitable to improve flame retardancy techniques, to discover flame-retardants that are more suitable and environment friendly, and to select appropriate natural fibres and biopolymers to develop fire safe biocomposite products. This article analyses the research done in the last decades for improving the thermal behaviour and fire resistance of green materials as well as the efficient synergistic techniques and fire retardant treatments to counter this vulnerability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Abbreviations

APP:

Ammonium polyphosphate

ATH:

Aluminium trihydrate

AlHP:

Aluminium hypophosphite

BS:

Barely straw

BnF:

Banana fibre

BF:

Bamboo fibre

CNTs:

Carbon nanotubes

CF:

Coconut fibre

CS:

Chitosan

C30B:

Closite 30B

CaHP:

Calcium hypophosphite

CopoP:

Copolymer of methyl phosphonic acid and methacrylate

DMRP:

Double layered microencapsulated red phosphorous

DAP:

Di-ammonium phosphate

DOPO:

9,10-Dihydro-9-oxa-10-phosphaphanthrene-10-oxide

DDGS:

Distiller’s dried grain solubles

DHAP:

Dihydrogen ammonium phosphate

DSC:

Differential scanning calorimetry

EG:

Expandable graphite

FR:

Flame retardant

FTIR:

Fourier transform infrared spectroscopy

FAR:

Federal Aviation Regulation

FMVSS:

Federal Motor Vehicle Safety Standard

FF:

Flax fabric

FRF:

Fire retardant ramie fibre

FPLA:

Fire-retardant polylactic acid

GBC:

Green biocomposite

GMA:

Glycidyl methacrylate

GP:

Glycerol phosphate

HRR:

Heat release rate

HB:

Horizontal burning

HF:

Hemp fabric

HFS:

Horizontal flame test

H:

Hemp

HDPE:

High-density polyethylene

HomoP:

Homopolymer of methacrylate

HP:

Hypophosphite

HRC:

Heat release capacity

HQDOPO:

10-Hydro-9-oxa-10-phosphahenanthrene10-oxide

IFR:

Intumescent flame-retardants

ICN:

Iso-cyanate

JF:

Jute fibre

JFb:

Jute fabric

KF:

Keratin fibre

KF:

Kenaf fibre

LOI:

Limiting oxygen index

LDPE:

Low density polyethylene

LS:

Layered silicates

Mw :

Molecular mass

MA:

Maleic acid

MAPP:

Micro ammonium polyphosphate

MCC:

Microscale combustion calorimetry

MH:

Magnesium hydroxide

MDH:

Magnesium dihydroxide

MA-g-PP:

Maleic anhydride grafted polypropylene

MMP:

Melamine phosphate

MMB:

Melamine borate

MMT:

Montmorillonite

MLR:

Mass loss rate

MWCNTs:

Multi walled carbon nanotubes O-MMT organic montmorillonite

OWF:

Oxidised wood flour PFR phosphorous flame retardant

PHR:

Parts per hundred rubbers

PHRR:

Peak heat release rate

PEG:

Polyethylene glycol

PMMA:

Polymethylmethacrylate

PP:

Polypropylene

POSS:

Polyhedral oligomeric silsesquioxanes

PLA:

Polylactic acid

PHA:

Polyhydroxyalkanoates

PBS:

Polybutylene succinate

PE:

Polyethylene

PP:

Polypropylene

PS:

Poly styrene

PNFC:

POSS-modified cellulose

PSi:

Phosphorous treated silane

REACH:

Registration, evaluation, authorisation, restriction of chemical substance

RP:

Red phosphorous

RDP:

Resorcinol diphenyl phosphate

SPR:

Smoke production rate

SEP:

Sepiolite

SEM:

Scanning electron microscope

Si:

Silicon

SiBnF:

Silicon treated banana fibre

SFb:

Sisal fabric

TGA:

Thermogravimetric analysis

TTI:

Time to ignition

THR:

Total heat release

TPS:

Thermoplastic starch

TPS-G:

Thermoplastic starch-glycerol

Tg :

Glass transition temperature

Tm :

Melt temperature

Tcc :

Crystallisation temperature

Tc :

Post crystallisation temperature

UL-94:

Underwriter Laboratories

WPC:

Wood plastic composite

WF:

Wood flour

ZnO:

Zinc oxide

References

  1. Chen Y, Chiparus O, Sun L, Negulescu I, Parikh DV, Calamari TA (2005) Natural fibers for automotive nonwoven composites. J Ind Text 35(1):47–62. https://doi.org/10.1177/1528083705053392

    Article  Google Scholar 

  2. Holbery J, Houston D (2006) Natural-fiber-reinforced polymer composites in automotive applications. JOM 58:80–86. https://doi.org/10.1007/s11837-006-0234-2

    Article  Google Scholar 

  3. Monteiro SN, Lopes FPD, Ferreira AS, Nascimento DCO (2009) Natural-fiber polymer-matrix composites: cheaper, tougher, and environmentally friendly, JOM 61:17–22. https://doi.org/10.1007/s11837-009-0004-z

    Article  Google Scholar 

  4. Rao S, Das R, Bhattacharyya D (2013) Investigation of bond strength and energy absorption capabilities in recyclable sandwich panels. Compos Part A 45:6–13. https://doi.org/10.1016/j.compositesa.2012.09.004

    Article  Google Scholar 

  5. Ramli N, Mazlan N, Ando Y, Leman Z, Abdan K, Aziz AA, Sairy NA (2018) Natural fiber for green technology in automotive industry: a brief review. Mater Sci Eng. https://doi.org/10.1088/1757-899x/368/1/012012

    Article  Google Scholar 

  6. Zini E, Scandola M (2011) Green composites: an overview. Polym Compos. https://doi.org/10.1002/pc.21224

    Article  Google Scholar 

  7. Kandpal BC, Chaurasia R, Khurana V (2015) Recent advances in green composites—a review recent advances in green composites—a review. Int J Technol Res Eng 2:742–747

    Google Scholar 

  8. Al-Oqla FM, Omari MA (2016) Sustainable biocomposites: challenges, potential and barriers for development. Green Energy Technol. https://doi.org/10.1007/978-3-319-46610-1_2

    Article  Google Scholar 

  9. Nam TH, Ogihara S, Kobayashi S (2012) Interfacial, mechanical and thermal properties of coir fiber-reinforced poly (lactic acid) biodegradable composites. Adv Compos Mater 21:103–122. https://doi.org/10.1163/156855112x629540

    Article  Google Scholar 

  10. Wongsriraksa P, Togashi K, Nakai A, Hamada H (2013) Continuous natural fiber reinforced thermoplastic composites by fiber surface modification. Adv Mech Eng. https://doi.org/10.1155/2013/685104

    Article  Google Scholar 

  11. Kalia S, Kaith BS, Kaur I (2009) Pretreatments of natural fibers and their application as reinforcing material in polymer composites—a review. Polym Eng Sci 49:1253–1272. https://doi.org/10.1002/pen.21328

    Article  Google Scholar 

  12. Keener TJ, Stuart RK, Brown TK (2004) Maleated coupling agents for natural fibre composites. Compos Part A Appl Sci Manuf 35:357–362. https://doi.org/10.1016/j.compositesa.2003.09.014

    Article  Google Scholar 

  13. Lee CH, Salit MS, Hassan MR (2014) A review of the flammability factors of kenaf and allied fibre reinforced polymer composites. Adv Mater Sci Eng. https://doi.org/10.1155/2014/514036

    Article  Google Scholar 

  14. Shah AR, Prabhakar M, Song J-I (2017) Current advances in the fire retardancy of natural fiber and bio-based composites—a review. Int J Precis Eng Manuf Technol 4:247–262. https://doi.org/10.1007/s40684-017-0030-1

    Article  Google Scholar 

  15. Kim NK, Dutta S, Bhattacharyya D (2018) A review of flammability of natural fibre reinforced polymeric composites. Compos Sci Technol 162:64–78. https://doi.org/10.1016/j.compscitech.2018.04.016

    Article  Google Scholar 

  16. Al-oqla FM, Salit MS, Ishak R (2014) Combined multi-criteria evaluation stage technique as an agro waste evaluation indicator for polymeric composites: date palm fibers as a case study. Bioresources 9:4608–4621. https://doi.org/10.15376/biores.9.3.4608-4621

    Article  Google Scholar 

  17. Mohanty AK, Misra M, Drzal LT (2002) Sustainable bio-composites from renewable resources: opportunities and challenges in the green materials world. J Polym Environ 10:19–26. https://doi.org/10.1023/a:1021013921916

    Article  Google Scholar 

  18. John M, Anandjiwala R (2008) Recent developments in chemical modification and characterization of natural fiber-reinforced composites. Polym Compos 29:187–207. https://doi.org/10.1002/pc.20461

    Article  Google Scholar 

  19. Luo S, Netravali AN (1999) Interfacial and mechanical properties of environment-friendly “green” composites made from pineapple fibers and poly(hydroxybutyrate-co-valerate) resin. J Mater Sci 34:3709–3719. https://doi.org/10.1023/a:1004659507231

    Article  Google Scholar 

  20. Price D, Anthony G, Carty P (2001) Introduction: polymer combustion, condensed phase pyrolysis and smoke formation. In: Horrocks AR, Price D (eds) Fire retardant materials. Woodhead Publishing, Cambridge, pp 1–30. https://doi.org/10.1533/9781855737464.1

    Chapter  Google Scholar 

  21. Bhattacharyya D, Subasinghe A, Kim NK (2015) Chapter 4. Natural fibers: their composites and flammability characterizations. In: Breuer U (ed) Multifunctionality of polymer composites: challenges and new solutions. Elsevier, Amsterdam. https://doi.org/10.1016/b978-0-323-26434-1.00004-0

    Chapter  Google Scholar 

  22. Bledzki AK, Gassan J (1999) Composites reinforced with cellulose based fibres. Prog Polym Sci 24:221–274. https://doi.org/10.1016/s0079-6700(98)00018-5

    Article  Google Scholar 

  23. Chapple S, Anandjiwala R (2010) Flammability of natural fiber-reinforced composites and strategies for fire retardancy: a review. J Thermoplast Compos Mater 23:877–893. https://doi.org/10.1177/0892705709356338

    Article  Google Scholar 

  24. Hapuarachchi TD, Ren G, Fan M (2007) Fire retardancy of natural fibre reinforced sheet moulding compound. Appl Compos Mater. https://doi.org/10.1007/s10443-007-9044-0

    Article  Google Scholar 

  25. Kozłowski R, Władyka-Przybylak M (2008) Flammability and fire resistance of composites reinforced by natural fibers. Polym Adv Technol 19:446–453. https://doi.org/10.1002/pat.1135

    Article  Google Scholar 

  26. Toldy A, Keszei S, Anna P, Bertalan G, Marosi G, Matko S (2005) Flame retardancy of biodegradable polymers and biocomposites, Polym Degrad Stab 88:138–145. https://doi.org/10.1016/j.polymdegradstab.2004.02.023

    Article  Google Scholar 

  27. Puchalski M, Szparaga G, Biela T, Gutowska A (2018) Molecular and supramolecular changes in polybutylene succinate (PBS) and polybutylene succinate adipate (PBSA) Copolymer during degradation in various environmental conditions. Polymers. https://doi.org/10.3390/polym10030251

    Article  Google Scholar 

  28. Khedari J, Charoenvai S, Hirunlabh J (2003) New insulating particleboards from durian peel and coconut coir. Build Environ 38:435–441. https://doi.org/10.1016/s0360-1323(02)00030-6

    Article  Google Scholar 

  29. Bocz K, Szolnoki B, Adyka-przybylak MW, Bujnowicz K, Harakály G, Bodzay B, Zimonyi E, Toldy A, Marosi G (2013) Flame retardancy of biocomposites based on thermoplastic starch. Polimery 58:385–394

    Article  Google Scholar 

  30. Gallo E, Schartel B, Acierno D, Cimino F, Russo P (2013) Tailoring the flame retardant and mechanical performances of natural fiber-reinforced biopolymer by multi-component laminate. Compos Part B 44:112–119. https://doi.org/10.1016/j.compositesb.2012.07.005

    Article  Google Scholar 

  31. Prabhakar MN, Atta Ur Rehaman S, Jung-II S (2017) Improved flame-retardant and tensile properties of thermoplastic starch/flax fabric green composites. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2017.03.036

    Article  Google Scholar 

  32. Kandola BK (2012) Flame Retardant characteristics of natural fibre composites. In: John M, Sabu T (eds) Natural polymers, composites, vol 1. The Royal Society of Chemistry, pp 86–117. https://doi.org/10.1039/9781849735193-00086

    Chapter  Google Scholar 

  33. Lyon R, Walters R (2005) Flammability of automotive plastics. SAE Technical Paper. https://doi.org/10.4271/2006-01-1010

  34. Mngomezulu ME, John MJ, Jacobs V, Luyt AS (2014) Review on flammability of biofibres and biocomposites. Carbohydr Polym 111:149–182. https://doi.org/10.1016/j.carbpol.2014.03.071

    Article  Google Scholar 

  35. Zhou L, Ju Y, Liao F, Yang Y, Wang X (2016) Improve the mechanical property and flame retardant efficiency of the composites of poly(lactic acid) and resorcinol di(phenyl phosphate) (RDP) with ZnO-coated kenaf. Fire Mater 40:129–140. https://doi.org/10.1002/fam.2274

    Article  Google Scholar 

  36. Avella M, Martuscelli E, Raimo M (2000) Properties of blends and composites based on poly(3-hydroxy) butyrate (PHB) and poly(3-hydroxybutyrate-hydroxyvalerate) (PHBV) copolymers. J Mater Sci 5:523–545. https://doi.org/10.1023/a:1004740522751

    Article  Google Scholar 

  37. Dittenber DB, Gangarao HVS (2012) Critical review of recent publications on use of natural composites in infrastructure. Compos Part A 43:1419–1429. https://doi.org/10.1016/j.compositesa.2011.11.019

    Article  Google Scholar 

  38. Das O, Sarmah AK (2015) Mechanism of waste biomass pyrolysis: effect of physical and chemical pre-treatments. Sci Total Environ 537:323–334. https://doi.org/10.1016/j.scitotenv.2015.07.076

    Article  Google Scholar 

  39. Horrocks AR (2008) An introduction to the burning behaviour of cellulosic fibres. J Soc Dye Colour 99:191–197. https://doi.org/10.1111/j.1478-4408.1983.tb03686.x

    Article  Google Scholar 

  40. Ferdous D, Dalai AK, Bej SK, Thring RW (2002) Pyrolysis of lignins: experimental and kinetics studies. Energy Fuels 16:1405–1412. https://doi.org/10.1021/ef0200323

    Article  Google Scholar 

  41. Azwa ZN, Yousif BF, Manalo AC, Karunasena W (2013) A review on the degradability of polymeric composites based on natural fibres. Mater Des 47:424–442. https://doi.org/10.1016/j.matdes.2012.11.025

    Article  Google Scholar 

  42. Galaska ML, Horrocks AR, Morgan AB (2017) Flammability of natural plant and animal fibers: a heat release survey. Fire Mater 41:275–288. https://doi.org/10.1002/fam.2386

    Article  Google Scholar 

  43. Borysiak S, Paukszta D, Helwig M (2006) Flammability of wood-polypropylene composites Polym Degrad Stab 91:3339–3343. https://doi.org/10.1016/j.polymdegradstab.2006.06.002

    Article  Google Scholar 

  44. Bertini F, Canetti M, Patrucco A, Zoccola M (2013) Wool keratin-polypropylene composites: properties and thermal degradation. Polym Degrad Stab 98:980–987. https://doi.org/10.1016/j.polymdegradstab.2013.02.011

    Article  Google Scholar 

  45. Subasinghe A, Bhattacharyya D (2014) Performance of different intumescent ammonium polyphosphate flame retardants in PP/kenaf fibre composites. Compos Part A 65:91–99. https://doi.org/10.1016/j.compositesa.2014.06.001

    Article  Google Scholar 

  46. Sperling LH (2005) Introduction to polymer science. In: Introduction to physical polymer science. Wiley, Hoboken, pp 1–28. https://doi.org/10.1002/0471757128.ch1

  47. Li H, Huneault MA (2007) Effect of nucleation and plasticization on the crystallization of poly(lactic acid). Polymer (Guildf) 48:6855–6866. https://doi.org/10.1016/j.polymer.2007.09.020

    Article  Google Scholar 

  48. Peelman N, Ragaert P, Ragaert K, De Meulenaer B, Devlieghere F, Cardon L (2015) Heat resistance of new biobased polymeric materials, focusing on starch, cellulose, PLA, and PHA. J Appl Polym Sci. https://doi.org/10.1002/app.42305

    Article  Google Scholar 

  49. Wang CZ, Wu WH, Ye X, Liu L (2013) Zinc hydroxystannate-coated mineral grade Mg(OH)2 as flame-retardant and smoke suppression for flexible PVC. Adv Mater Mater Process. https://doi.org/10.4028/www.scientific.net/amr.652-654.481

    Article  Google Scholar 

  50. Martins MSS, Schartel B, Magalhães FD, Pereira CMC (2017) The effect of traditional flame retardants, nanoclays and carbon nanotubes in the fire performance of epoxy resin composites. Fire Mater 41:111–130. https://doi.org/10.1002/fam.2370

    Article  Google Scholar 

  51. Camino G, Maffezzoli A, Braglia M, De Lazzaro M, Zammarano M (2001) Effect of hydroxides and hydroxycarbonate structure on fire retardant effectiveness and mechanical properties in ethylene-vinyl acetate copolymer. Polym Degrad Stab 74:457–464. https://doi.org/10.1016/s0141-3910(01)00167-7

    Article  Google Scholar 

  52. Belousova RG, Schwartz EM, Zari IE, Valdniece DJ (2010) Low-toxicity boron-containing fire-retardant additives for polymeric coatings. Macromol Compd Polym Mater 83:328–331. https://doi.org/10.1134/s1070427210020278

    Article  Google Scholar 

  53. Alaee M, Arias P, Sjödin A, Bergman Å (2003) An overview of commercially used brominated flame retardants, their applications, their use patterns in different countries/regions and possible modes of release. Environ Int 29:683–689. https://doi.org/10.1016/s0160-4120(03)00121-1

    Article  Google Scholar 

  54. Hites RA (2006) Dechlorane Plus, a chlorinated flame retardant, in the Great Lakes. Environ Sci Technol 40:1184–1189. https://doi.org/10.1021/es051911h

    Article  Google Scholar 

  55. Chang Y, Wang Y, Ban D, Yang B, Zhao G (2004) A novel phosphorus-containing polymer as a highly effective flame retardant. Macromol Mater Eng 289:703–707. https://doi.org/10.1002/mame.200400064

    Article  Google Scholar 

  56. Van Der Veen I, De Boer J (2012) Phosphorus flame retardants: properties, production, environmental occurrence, toxicity and analysis. Chemosphere 88: 1119–1153. https://doi.org/10.1016/j.chemosphere.2012.03.067

    Article  Google Scholar 

  57. Gallo E, Schartel B, Braun U, Russo P, Acierno D (2011) Fire retardant synergisms between nanometric Fe2O3 and aluminum phosphinate in poly(butylene terephthalate). Polym Adv Technol 22:2382–2391. https://doi.org/10.1002/pat.1774

    Article  Google Scholar 

  58. Gallo E, Schartel B, Acierno D, Russo P (2011) Flame retardant biocomposites: Synergism between phosphinate and nanometric metal oxides. Eur Polym J 47: 1390–1401. https://doi.org/10.1016/j.eurpolymj.2011.04.001

    Article  Google Scholar 

  59. Kashiwagi T, Du F, Winey KI, Groth KM, Shields JR, Bellayer SP, Kim H, Douglas JF (2005)Flammability properties of polymer nanocomposites with single-walled carbon nanotubes: effects of nanotube dispersion and concentration. Polymer (Guildf) 46:471–481. https://doi.org/10.1016/j.polymer.2004.10.087

    Article  Google Scholar 

  60. Schartel B, Pötschke P, Knoll U, Abdel-Goad M (2005) Fire behaviour of polyamide 6/multiwall carbon nanotube nanocomposites. Eur Polym J 41:1061–1070. https://doi.org/10.1016/j.eurpolymj.2004.11.023

    Article  Google Scholar 

  61. Bocchini S, Frache A, Camino G, Claes M (2007) Polyethylene thermal oxidative stabilisation in carbon nanotubes based nanocomposites. Eur Polym J 43:3222–3235.https://doi.org/10.1016/j.eurpolymj.2007.05.012

    Article  Google Scholar 

  62. Dittrich B, Wartig K-A, Hofmann D, Mülhaupt R, Schartel B (2013) Flame retardancy through carbon nanomaterials: carbon black, multiwall nanotubes, expanded graphite, multi-layer graphene and graphene in polypropylene. Polym Degrad Stab 98:1495–1505. https://doi.org/10.1016/j.polymdegradstab.2013.04.009

    Article  Google Scholar 

  63. Kashiwagi T, Du F, Douglas JF, Winey KI, Harish Jr RH, Shields JR (2005) Nanoparticle networks reduce the flammability of polymer nanocomposites. Nat Mater 4:928–933 https://doi.org/10.1038/nmat1502

    Article  Google Scholar 

  64. Franchini E, Galy J, Gérard J-F, Tabuani D, Medici A (2009) Influence of POSS structure on the fire retardant properties of epoxy hybrid networks. Polym Degrad Stab 94:1728–1736. https://doi.org/10.1016/j.polymdegradstab.2009.06.025

    Article  Google Scholar 

  65. Dasari A, Yu Z-Z, Mai Y-W, Cai G, Song H (2009) Roles of graphite oxide, clay and POSS during the combustion of polyamide 6. Polymer (Guildf) 50:1577–1587. https://doi.org/10.1016/j.polymer.2009.01.050

    Article  Google Scholar 

  66. Ma H, Tong L, Xu Z, Fang Z (2007) Synergistic effect of carbon nanotube and clay for improving the flame retardancy of ABS resin. Nanotechnology 18:8. https://doi.org/10.1088/0957-4484/18/37/375602

    Article  Google Scholar 

  67. Beyer G (2002) Short communication: carbon nanotubes as flame retardants for polymers. Fire Mater 26:291–293. https://doi.org/10.1002/fam.805

    Article  Google Scholar 

  68. Yen Y-Y, Wang H-T, Guo W-J (2012) Synergistic flame retardant effect of metal hydroxide and nanoclay in EVA composites. Polym Degrad Stab 97:863–869. https://doi.org/10.1016/j.polymdegradstab.2012.03.043

    Article  Google Scholar 

  69. Lin M, Li B, Li Q, Li S, Zhang S (2011) Synergistic effect of metal oxides on the flame retardancy and thermal degradation of novel intumescent flame-retardant thermoplastic polyurethanes. J Appl Polym Sci 121:1951–1960. https://doi.org/10.1002/app

    Article  Google Scholar 

  70. Mode of action (n.d.) https://www.flameretardants-online.com/flame-retardants/mode-of-action. Accessed 30 Dec 2019

  71. Xu G, Cheng J, Wu H, Lin Z, Zhang Y, Wang H (2013) Functionalized carbon nanotubes with oligomeric intumescent flame retardant for reducing the agglomeration and flammability of poly(ethylene vinyl acetate) nanocomposites. Polym Compos 34:109–121. https://doi.org/10.1002/pc.22382

    Article  Google Scholar 

  72. Sypaseuth FD, Gallo E, Schartel B (2017) Polylactic acid biocomposites: approaches to a completely green flame retarded polymer. Polymers (Basel) 17: 449–462. https://doi.org/10.1515/epoly-2017-0024

    Article  Google Scholar 

  73. Zhang Z, Yuan L, Liang G, Gu A, Qiang Z, Yang C, Chen X (2014) Unique hybridized carbon nanotubes and their high performance flame retarding composites with high smoke suppression, good toughness and low curing temperature. J Mater Chem A 2:4975–4988. https://doi.org/10.1039/c3ta14687a

    Article  Google Scholar 

  74. Huang M-F, Yu J-G, Ma X-F (2004) Studies on the properties of Montmorillonite-reinforced thermoplastic starch composites. Polymer (Guildf) 45: 7017–7023. https://doi.org/10.1016/j.polymer.2004.07.068

    Article  Google Scholar 

  75. Yu T, Jiang N, Li Y (2014) Functionalized multi-walled carbon nanotube for improving the flame retardancy of ramie/poly(lactic acid) composite. Compos Sci Technol 104:26–33. https://doi.org/10.1016/j.compscitech.2014.08.021

    Article  Google Scholar 

  76. Horrocks AR, Kandola BK (2005) Flammability and fire resistance of composites. In: Long AC (ed) Design and manufacture of textile composites. Woodhead Publishing, Cambridge, pp 330–363. https://doi.org/10.1533/9781845690823.330

    Chapter  Google Scholar 

  77. Nafchi A, Moradpour M, Saeidi M, Karim A (2013) Thermoplastic starches: properties, challenges, and prospects. Starch-Stärke 65:61–72. https://doi.org/10.1002/star.201200201

    Article  Google Scholar 

  78. Ma X, Yu J (2004) Studies on the properties of formamide plasticized-thermoplastic starch. Acta Polym Sin 2:240–245

    Google Scholar 

  79. Peelman N, Ragaert P, De Meulenaer B, Adons D, Peeters R, Cardon L, Van Impe F (2013) Application of bioplastics for food packaging. Trends Food Sci Technol 32:128–141. https://doi.org/10.1016/j.tifs.2013.06.003

    Article  Google Scholar 

  80. Anglès MN, Dufresne A (2000) Plasticized starch/tunicin whiskers nanocomposites. 1. Structural analysis. Macromolecules 33:8344–8353. https://doi.org/10.1021/ma0008701

    Article  Google Scholar 

  81. Avella M, De Vlieger JJ, Errico ME, Fischer S, Vacca P, Volpe MG (2005) Biodegradable starch/clay nanocomposite films for food packaging applications. Food Chem 93:467–474. https://doi.org/10.1016/j.foodchem.2004.10.024

    Article  Google Scholar 

  82. Bastioli C (1998) Properties and applications of mater-bi starch-based materials. Polym Degrad Stab 59:263–272. https://doi.org/10.1016/s0141-3910(97)00156-0

    Article  Google Scholar 

  83. Gotro J (2013) Thermoplastic starch: a renewable, biodegradable bioplastic. https://polymerinnovationblog.com/thermoplastic-starch-a-renewable-biodegradable-bioplastic/

  84. Weber CJ, Haugaard V, Festersen R, Bertelsen G (2002) Production and applications of biobased packaging materials for the food industry. Food Addit Contam 19:172–177. https://doi.org/10.1080/02652030110087483

    Article  Google Scholar 

  85. Gallo E, Sanchez-Olivares G, Schartel B (2013) Flame retarded starch-based biocomposites—aluminum hydroxide-coconut fiber synergy. Polimery 58:395–402. https://doi.org/10.14314/polimery.2013.395

    Article  Google Scholar 

  86. Prabhakar MN, Song J (2018) Fabrication and characterisation of starch/chitosan/flax fabric green flame-retardant composites. Int J Biol Macromol 119:1335–1343. https://doi.org/10.1016/j.ijbiomac.2018.07.006

    Article  Google Scholar 

  87. Rabe S, Sanchez-olivares G, Pérez-chávez R, Schartel B (2019) Natural keratin and coconut fibres from industrial wastes in flame retarded thermoplastic starch biocomposites. Materials (Basel) 12:1–24. https://doi.org/10.3390/ma12030344

    Article  Google Scholar 

  88. Duquesne S, Samyn F, Ouagne P, Bourbigot S (2015) Flame retardancy and mechanical properties of flax reinforced woven for composite applications. J Ind Text 44:665–681. https://doi.org/10.1177/1528083713505633

    Article  Google Scholar 

  89. Silva-Guzmán JA, Anda RR, Fuentes-Talavera FJ, Manríquez-González R, Lomelí-Ramírez MG (2018) Properties of thermoplastic corn starch based green composites reinforced with barley (Hordeum vulgare L.) straw particles obtained by thermal compression. Fibers Polym 19:1970–1979. https://doi.org/10.1007/s12221-018-8023-4

    Article  Google Scholar 

  90. Cardon L, Deckers J, Verberckmoes A, Ragaert K, Delva L, Shahzad K, Vleugels J, Kruth J-P (2012) Polystyrene-coated alumina powder via dispersion polymerization for indirect selective laser sintering applications. J Appl Polym Sci 128:2121–2128. https://doi.org/10.1002/app.38388

    Article  Google Scholar 

  91. Yu L, Dean K, Li L (2006) Polymer blends and composites from renewable resources. Prog Polym Sci 31:576–602. https://doi.org/10.1016/j.progpolymsci.2006.03.002

    Article  Google Scholar 

  92. Bogaert J, Coszach P (2000) Poly(lactic acids): a potential solution to plastic waste dilemma. Macromol Symp 153:287–303. https://doi.org/10.1002/1521-3900(200003)153:1%3c287::aid-masy287%3e3.0.co;2-e

    Article  Google Scholar 

  93. Jamshidian M, Tehrany EA, Imran M, Jacquot M, Desobry S (2010) Poly-lactic acid: production, applications, nanocomposites, and release studies. Compr Rev Food Sci Food Saf 9:552–571. https://doi.org/10.1111/j.1541-4337.2010.00126.x

    Article  Google Scholar 

  94. John RP, Nampoothiri KM (2007) Fermentative production of lactic acid from biomass: an overview on process developments and future perspectives. Appl Microbiol Biotechnol 74:524–534. https://doi.org/10.1007/s00253-006-0779-6

    Article  Google Scholar 

  95. Rasal RM, Janorkar AV, Hirt DE (2010) Poly(lactic acid) modifications. Prog Polym Sci 35:338–356. https://doi.org/10.1016/j.progpolymsci.2009.12.003

    Article  Google Scholar 

  96. Siracusa V, Dalla M (2008) Biodegradable polymers for food packaging: a review. Trends Food Sci Technol 19:634–643. https://doi.org/10.1016/j.tifs.2008.07.003

    Article  Google Scholar 

  97. Södergård A, Stolt M (2002) Properties of lactic acid based polymers and their correlation with composition. Prog Polym Sci 27:1123–1163. https://doi.org/10.1016/s0079-6700(02)00012-6

    Article  Google Scholar 

  98. Réti C, Casetta M, Duquesne S, Bourbigot S, Delobel R (2008) Flammability properties of intumescent PLA including starch and lignin. Polym Adv Technol 19:628–635. https://doi.org/10.1002/pat.1130

    Article  Google Scholar 

  99. Shumao L, Jie R, Hua Y, Weizhong Y (2010) Influence of ammonium polyphosphate on the flame retardancy and mechanical properties of ramie fiber-reinforced poly(lactic acid) biocomposites. Polym Int 59:242–248. https://doi.org/10.1002/pi.2715

    Article  Google Scholar 

  100. Fox DM, Lee J, Citro CJ, Novy M (2013) Flame retarded poly(lactic acid) using POSS-modified cellulose. 1. Thermal and combustion properties of intumescing composites. Polym Degrad Stab 98:590–596. https://doi.org/10.1016/j.polymdegradstab.2012.11.016

    Article  Google Scholar 

  101. Bocz K, Szolnoki B, Marosi A, Tábi T, Wladyka-przybylak M, Marosi G (2013) Flax fibre reinforced PLA/TPS biocomposites flame retarded with multifunctional additive system. Polym Degrad Stab. https://doi.org/10.1016/j.polymdegradstab.2013.10.025

    Article  Google Scholar 

  102. Zhang R, Xiao X, Tai Q, Huang H, Hu Y (2012) Modification of lignin and its application as char agent in intumescent flame-retardant poly(lactic acid). Polym Eng Sci 52:2620–2626. https://doi.org/10.1002/pen.23214

    Article  Google Scholar 

  103. Young W, Tsao Y (2014) The mechanical and fire safety properties of bamboo fiber reinforced polylactide biocomposites fabricated by injection molding. J Compos Mater. https://doi.org/10.1177/0021998314554437

    Article  Google Scholar 

  104. Shukor F, Hassan A, Islam MS, Mokhtar M, Hasan M (2014) Effect of ammonium polyphosphate on flame retardancy, thermal stability and mechanical properties of alkali treated kenaf fiber filled PLA biocomposites. Mater Des 54:425–429. https://doi.org/10.1016/j.matdes.2013.07.095

    Article  Google Scholar 

  105. Vp S, Mohanty S, Nayak SK (2015) A study on thermal degradation kinetics and flammability properties of poly(lactic acid)/banana fiber/nanoclay hybrid bionanocomposites. Polym Compos. https://doi.org/10.1002/pc.23779

    Article  Google Scholar 

  106. Vp S, Mohanty S, Nayak SK (2016) Influence of nanoclay and graft copolymer on the thermal and flammability properties of poly (lactic acid)/banana fiber biocomposites. J Vinyl Addit Technol. https://doi.org/10.1002/vnl

    Article  Google Scholar 

  107. Yu T, Tuerhongjiang T, Sheng C, Li Y (2017) Phosphorus-containing diacid and its application in jute/poly(lactic acid) composites: mechanical, thermal and flammability properties. Compos Part A 97:60–66. https://doi.org/10.1016/j.compositesa.2017.03.004

    Article  Google Scholar 

  108. Tao Y, Ding D, Cong S, Tuerdi T, Yan L (2017) Enhanced mechanical properties and flame retardancy of short jute fiber/poly(lactic acid) composites with phosphorus-based compound. Sci China Technol Sci 60:1716–1723. https://doi.org/10.1007/s11431-016-9009-1

    Article  Google Scholar 

  109. Shi X, Ju Y, Zhang M, Wang X (2018) The intumescent flame—retardant biocomposites of poly(lactic acid) containing surface—coated ammonium polyphosphate and distiller’s dried grains with solubles (DDGS). Fire Mater 42:190–197. https://doi.org/10.1002/fam.2479

    Article  Google Scholar 

  110. Kandola BK, Mistik SI, Pornwannachai W, Anand SC (2018) Natural fibre-reinforced thermoplastic composites from woven–nonwoven textile preforms: mechanical and fibre performance study. Compos Part B 153:456–464. https://doi.org/10.1016/j.compositesb.2018.09.013

    Article  Google Scholar 

  111. Yang Y, Haurie L, Wen J, Zhang S, Ollivier A, Wang D (2019) Effect of oxidized wood flour as functional filler on the mechanical, thermal and flame-retardant properties of polylactide biocomposites. Ind Crop Prod 130:301–309. https://doi.org/10.1016/j.indcrop.2018.12.090

    Article  Google Scholar 

  112. Taylor P, Zaikov GE, Artsis MI (1996) International Journal of Polymeric Fire Retardant Polymers (Fifth European Conference). Int J Polym Mater Polym Biomater 33:261–263. https://doi.org/10.1080/00914039608029410

    Article  Google Scholar 

  113. Hapuarachchi TD, Peijs T (2010) Multiwalled carbon nanotubes and sepiolite nanoclays as flame retardants for polylactide and its natural fibre reinforced composites. Compos Part A 41:954–963. https://doi.org/10.1016/j.compositesa.2010.03.004

    Article  Google Scholar 

  114. Fox DM, Lee J, Zammarano M, Katsoulis D, Eldred DV, Haverhals LM, Trulove PC, De Long HC, Gilman JW (2012) Charforming behavior of nanofibrillated cellulose treated with glycidyl phenyl POSS. Carbohydr Polym 88:847–858. https://doi.org/10.1016/j.carbpol.2012.01.015

    Article  Google Scholar 

  115. Fox DM, Lee J, Ford E, Balsley E, Zammarano M, Matko S, Gilman JW (2000) POSS-modified cellulose for improving flammability characteristics of polystyrene. In: 10th international conference wood biofiber plastic composites, pp 337–342

  116. Huneault MA, Li H (2007) Morphology and properties of compatibilized polylactide/thermoplastic starch blends. Polymer (Guildf) 48:270–280. https://doi.org/10.1016/j.polymer.2006.11.023

    Article  Google Scholar 

  117. Xie Y, Hill CAS, Xiao Z, Militz H, Mai C (2010) Composites: part A silane coupling agents used for natural fiber/polymer composites: a review. Compos Part A 41:806–819. https://doi.org/10.1016/j.compositesa.2010.03.005

    Article  Google Scholar 

  118. Arbelaiz A, Fern B, Ramos JA, Mondragon I (2006) Thermal and crystallization studies of short flax fibre reinforced polypropylene matrix composites: effect of treatments. Thermochim Acta 440:111–121. https://doi.org/10.1016/j.tca.2005.10.016

    Article  Google Scholar 

  119. Treacy MMJ, Ebbesen TW, Gibson JM (1996) Exceptionally high young modulus observed for individual carbon nanotubes. Nature 381:678–680. https://doi.org/10.1038/381678a0

    Article  Google Scholar 

  120. Robertson DH, Brenner DW, Mintmire JW (1992) Energetics of nanoscale graphitic tubules. Phys Rev B 45:592–595. https://doi.org/10.1103/physrevb.45.12592

    Article  Google Scholar 

  121. Zhang W, Chen B, Zhao H, Yu P, Fu D, Wen J, Peng X (2013) Processing and characterization of supercritical CO2 batch foamed poly(lactic acid)/poly(ethylene glycol) scaffold for tissue engineering application. J Appl Polym Sci 130:3066–3073. https://doi.org/10.1002/app.39523

    Article  Google Scholar 

  122. Orue A, Eceiza A, Arbelaiz A (2018) The effect of sisal fiber surface treatments, plasticizer addition and annealing process on the crystallization and the thermo-mechanical properties of poly(lactic acid) composites. Ind Crop Prod 118:321–333. https://doi.org/10.1016/j.indcrop.2018.03.068

    Article  Google Scholar 

  123. Fujimaki T (1998) Processability and properties of aliphatic polyesters, ‘BIONOLLE’, synthesized by polycondensation reaction. Polym Degrad Stab 59:209–214. https://doi.org/10.1016/s0141-3910(97)00220-6

    Article  Google Scholar 

  124. Nova Institution (n.d.) Biobased polybutylene succinate (PBS)—an attractive polymer for biopolymer compounds polybutylene succinate—an interesting building block for biopolymer compounds based on biobased succinic acid

  125. Jacquel N, Freyermouth F, Fenouillot F, Rousseau A, Pascault JP, Fuertes P, Saint-Loup R (2011) Synthesis and properties of poly(butylene succinate): efficiency of different transesterification catalysts. J Polym Sci Part A Polym Chem 49:5301–5312. https://doi.org/10.1002/pola.25009

    Article  Google Scholar 

  126. Zeikus JG, Jain MK, Elankovan P (1999) Biotechnology of succinic acid production and markets for derived industrial products. Appl Microbiol Biotechnol 51:545–552. https://doi.org/10.1007/s002530051431

    Article  Google Scholar 

  127. Dorez G, Taguet A, Ferry L (2013) Thermal and fibre behavior of natural fibers/PBS biocomposites. Polym Degrad Stab 98:87–95. https://doi.org/10.1016/j.polymdegradstab.2012.10.026

    Article  Google Scholar 

  128. Ferry L, Dorez G, Taguet A, Otazaghine B, Lopez-Cuesta JM (2015) Chemical modification of lignin by phosphorus molecules to improve the fire behavior of polybutylene succinate. Polym Degrad Stab 113:135–143. https://doi.org/10.1016/j.polymdegradstab.2014.12.015

    Article  Google Scholar 

  129. Jiang S, Yang Y, Ge S, Zhang Z, Peng W (2018) Preparation and properties of novel flame-retardant PBS wood–plastic composites. Arab J Chem 11:844–857. https://doi.org/10.1016/j.arabjc.2017.12.023

    Article  Google Scholar 

  130. Nie S, Liu X, Dai G, Yuan S, Cai F, Li B, Hu Y (2012) Investigation on flame retardancy and thermal degradation of flame retardant poly(butylene succinate)/bamboo fiber biocomposites. J Appl Polym Sci 125:E485–E489. https://doi.org/10.1002/app.36915

    Article  Google Scholar 

  131. Dash BN, Nakamura M, Sahoo S, Kotaki M, Nakai A, Hamada H (2008) Mechanical properties of hemp reinforced poly(butylene succinate) biocomposites. J Biobased Mater Bioenergy 2:273–281. https://doi.org/10.1166/jbmb.2008.403

    Article  Google Scholar 

  132. Hobbs C (2019) Recent advances in bio-based flame retardant additives for synthetic polymeric materials. Polymers (Basel) 11:224. https://doi.org/10.3390/polym11020224

    Article  Google Scholar 

  133. Laachachi A, Burger N, Apaydin K, Sonnier R, Ferriol M (2015) Is expanded graphite acting as flame retardant in epoxy resin? Polym Degrad Stab 117:22–29. https://doi.org/10.1016/j.polymdegradstab.2015.03.016

    Article  Google Scholar 

  134. Wang Y, Zhao J (2019) Effect of graphene on flame retardancy of graphite doped intumescent flame retardant (IFR) coatings: synergy or antagonism. Coatings 9:94. https://doi.org/10.3390/coatings9020094

    Article  Google Scholar 

  135. Fontaine G, Gallos A, Bourbigot S (2014) Role of montmorillonite for enhancing fire retardancy of intumescent PLA. Fire Saf Sci. https://doi.org/10.3801/iafss.fss.11

    Article  Google Scholar 

  136. I. Bureau (2010) WO 2010/069835 Al (81), 21

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Rashid.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rashid, M., Chetehouna, K., Cablé, A. et al. Analysing Flammability Characteristics of Green Biocomposites: An Overview. Fire Technol 57, 31–67 (2021). https://doi.org/10.1007/s10694-020-01001-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10694-020-01001-0

Keywords

Navigation