Skip to main content
Log in

Vibrational Entropy and Complexity Measures in Modified Pöschl–Teller Plus Woods–Saxon potential

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

The explicit expression of the vibrational partition function for the modified Pöschl–Teller plus Woods–Saxon potential has been presented in a closed-form. The analytical expression for the vibrational mean energy have also been calculated were other thermodynamic functions like the vibrational specific heat, free energy, and the entropy for the gallium nitride wurtzite crystal structure have been determined in details. The dependence of these functions on the potential parameters has also been discussed in detail. By using the ground state energy and the probability density, the behaviours of some theoretic quantities (Shannon entropy and Fisher information entropy) have also been calculated and analyzed graphically as a function of the potential parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. L. Boltzmann, Wien Ber. 66, 275 (1872)

    Google Scholar 

  2. E.G.D. Cohen, Pramana. J. Phys. 64, 635 (2005)

    Article  ADS  Google Scholar 

  3. J. Von Neumann, Mathematische Grundlagen der Quantenmechanik (Springer, Berlin, 1932)

    MATH  Google Scholar 

  4. S. Majumdar, N. Mukherjee, A.K. Roy, Chem. Phys. Lett. 716, 257 (2019)

    Article  ADS  Google Scholar 

  5. E. Romera, M. Calixto, A. Nagy, EPL 97, 20011 (2012)

    Article  ADS  Google Scholar 

  6. C.-S. Jia, L.-H. Zhang, C.-W. Wang, Chem. Phys. Lett. 667, 211 (2017)

    Article  ADS  Google Scholar 

  7. X.-Q. Song, C.-W. Wang, C.-S. Jia, Chem. Phys. Lett. 673, 50 (2017)

    Article  ADS  Google Scholar 

  8. C.A. Onate, M.C. Onyeaju, U.S. Okorie, A.N. Ikot, Results Phys. 16, 102959 (2020)

    Article  Google Scholar 

  9. U.S. Okorie, E.E. Ibekwe, A.N. Ikot, M.C. Onyeaju, E.O. Chukwuocha, JKPS 73, 1211 (2018)

    Article  ADS  Google Scholar 

  10. M.C. Onyeaju, A.N. Ikot, C.A. Onate, O. Ebomwonyi, M.E. Udoh, J.O.A. Idiodi, Eur. Phys. J. Plus 132, 302 (2017)

    Article  Google Scholar 

  11. A.N. Ikot, E.O. Chukwuocha, M.C. Onyeaju, C.A. Onate, B.I. Ita, M.E. Udoh, Pramana. J. Phys. 90, 22 (2018)

    Article  ADS  Google Scholar 

  12. P.A. Bouvrie, S. Lopez-Rosa, J.S. Dehesa, Phys. Rev. A 86, 012507 (2012)

    Article  ADS  Google Scholar 

  13. C.-S. Jia, C.-W. Wang, L.-H. Zhang, X.-L. Peng, R. Zeng, X.-T. You, Chem. Phys. Lett. 676, 150 (2017)

    Article  ADS  Google Scholar 

  14. A. Ghanbari, R. Khordad, Chem. Phys. (2020). https://doi.org/10.1016/j.chemphys.2020.110732

  15. C.-S. Jia, L.-H. Zhang, X.-L. Peng, J.-X. Luo, Y.-L. Zhao, J.-Y. Liu, J.-J. Guo, L.-D. Tang, Chem. Eng. Sci. 202, 70 (2019)

    Article  Google Scholar 

  16. C.-S. Jia, C.-W. Wang, L.-H. Zhang, X.-L. Peng, H.-M. Tang, R. Zeng, Chem. Eng. Sci. 183, 26 (2018)

    Article  Google Scholar 

  17. C.-S. Jia, R. Zeng, X.-L. Peng, L.-H. Zhang, Y.-L. Zhao, Chem. Eng. Sci. 190, 1 (2018)

    Article  Google Scholar 

  18. X.-L. Peng, R. Jiang, C.-S. Jia, L.-H. Zhang, Y.-L. Zhao, Chem. Eng. Sci. 190, 122 (2018)

    Article  Google Scholar 

  19. R. Jiang, C.-S. Jia, Y.-Q. Wang, X.-L. Peng, L.-H. Zhang, Chem. Phys. Lett. 715, 186 (2019)

    Article  ADS  Google Scholar 

  20. B. Tang, Y.-T. Wang, X.-L. Peng, L.-H. Zhang, C.-S. Jia, J. Mol. Strut. 1199, 126958 (2020)

    Article  Google Scholar 

  21. C.-S. Jia, X.-T. You, J.-Y. Liu, L.-H. Zhang, X.-L. Peng, Y.-T. Wang, L.-S. Wei, Chem. Phys. Lett. 717, 16 (2019)

    Article  ADS  Google Scholar 

  22. R. Jiang, C.-S. Jia, Y.-Q. Wang, X.-L. Peng, L.-H. Zhang, Chem. Phys. Lett. 726, 83 (2019)

    Article  ADS  Google Scholar 

  23. J. Wang, C.-S. Jia, C.-J. Li, X.-L. Peng, L.-H. Zhang, J.-Y. Liu, ACS Omega 4, 19193 (2019)

    Article  Google Scholar 

  24. X.-Y. Chen, J. Li, C.-S. Jia, ACS Omega 4, 16121 (2019)

    Article  Google Scholar 

  25. C.-S. Jia, Y.-T. Wang, L.-S. Wei, C.-W. Wang, X.-L. Peng, L.-H. Zhang, ACS Omega 4, 20000 (2019)

    Article  Google Scholar 

  26. W.A. Yahya, K.J. Oyewumi, JAAUBS 21, 53 (2016). https://doi.org/10.1016/j.jaubas.2015.04.001

    Article  Google Scholar 

  27. P. Ghosh, D. Nath, Int. J. Quantum Chem. 119, e25964 (2019)

    Article  Google Scholar 

  28. P.A. Bouvrie, J.C. Angulo, J.S. Dehesa, Phys. A 390, 2215 (2011)

    Article  MathSciNet  Google Scholar 

  29. C.N. Isonguyo, K.J. Oyewumi, O.S. Oyun, Int. J. Quantum Chem. 118, 25620 (2018)

    Article  Google Scholar 

  30. S. Majumdar, N. Mukherjee, A.K. Roy, Chem. Phys. Lett. 716, 257 (2019)

    Article  ADS  Google Scholar 

  31. C.A. Onate, A.N. Ikot, M.C. Onyeaju, O. Ebomwonyi, J.O.A. Idiodi, Karbala Int’l J. Mod. Sci. 4, 134 (2018)

    Article  Google Scholar 

  32. J.P.G. Nascimento, F.A.P. Ferreira, V. Aguiar, I. Guedes, R.N.C. Filho, Phys. A 499, 250 (2018)

    Article  MathSciNet  Google Scholar 

  33. V. Aguiar, I. Guedes, Phys. Scr. 90, 045207 (2015)

    Article  ADS  Google Scholar 

  34. M.C. Onyeaju, A.N. Ikot, C.A. Onate, E. Aghemenloh, H. Hassanabadi, Int’l J. Mod. Phys. B 31, 1750119 (2017)

    Article  ADS  Google Scholar 

  35. J.H. Marsh, A.C. Bryce, Mater. Sci. Eng., B 28, 272–278 (1994)

    Article  Google Scholar 

  36. Z. Parang, A. Keshavarz, N. Zamani, J. Comput. Electron. 13, 1020–1025 (2014)

    Article  Google Scholar 

  37. M.L. Strelalov, Chem. Phys. 393, 192 (2004)

    ADS  Google Scholar 

  38. M.L. Strelalov, Chem. Phys. Lett. 439, 209 (2007)

    Article  ADS  Google Scholar 

  39. A.N. Ikot, E.O. Chukwuocha, M.C. Onyeaju, C.A. Onate, B.I. Ita, M.E. Udoh, Pramanna J. Phys. 90, 22 (2018)

    Article  ADS  Google Scholar 

  40. C.E. Shannon, Bell Syst. Technol. J. 27, 379 (1948)

    Article  Google Scholar 

  41. R.A. Fisher, Proc. Camb. Philos. Soc. 22, 700 (1925)

    Article  ADS  Google Scholar 

  42. http://www.ioffe.ru/SVA/NSM/Semicond/GaN/basic.html

Download references

Acknowledgements

It is a pleasure for us to thank the kind referee for his many useful comments and suggestions which greatly helped us in making improvements to this paper

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. C. Onyeaju.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

$$\begin{aligned} \int \limits _{-1}^1 {\left( {\frac{1-y}{2}} \right) }^{a}\left( {\frac{1+y}{2}} \right) ^{b}\left[ {P_{n}^{(a,b)} (x)} \right] ^{2}dx= & {} \frac{2\Gamma (a+n+1)\Gamma (b+n+1)}{n!a\Gamma (a+b+2n+1)\Gamma (a+b+n+1)}. \end{aligned}$$
(A.1)
$$\begin{aligned} P_{n}^{(a,b)} (1-2x)= & {} \frac{\Gamma (a+n+1)}{n!\Gamma (a+1)}{ }_{2}F_{1} (-n,n+a+b+1;a+1;x). \end{aligned}$$
(A.2)

where \(P_{n} (z)\) is Jacobi polynomials.

$$\begin{aligned} { }_{2}F_{1} (a,b;c;y)=\frac{\Gamma (c)}{\Gamma (a)\Gamma (b)}\sum \limits _{n=0}^\infty {\frac{\Gamma (a+n)\Gamma (b+n)}{\Gamma (c+n)}} \frac{y^{n}}{n!}. \end{aligned}$$
(A.3)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Onyeaju, M.C., Onate, C.A. Vibrational Entropy and Complexity Measures in Modified Pöschl–Teller Plus Woods–Saxon potential. Few-Body Syst 61, 21 (2020). https://doi.org/10.1007/s00601-020-01554-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00601-020-01554-4

Navigation