Skip to main content
Log in

Effects of a Bt-based insecticide on the functional response of Ceraeochrysa cincta preying on Plutella xylostella

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Plutella xylostella, is the main pest infesting Brassica crops, and products based on Bacillus thuringiensis (Bt) are frequently used in strategies for its biocontrol. The present study aimed to evaluate whether a Bt-based bioinsecticide affects the predation behavior of Ceraeochrysa cincta when preying on P. xylostella. Three larval instars of the predator and the eggs and second-instar larvae of the moth were used, with the prey either untreated or treated with a Bt-based product (Xentari®). Results showed that, the first larval instar of C. cincta presented a type II functional response when preying upon untreated eggs, and a type III response when preying upon Bt-treated eggs, while the second and third instars presented type II and III responses, respectively, in both situations. The predator’s first and third larval instars presented a type II functional response when preying upon untreated larvae and a type III response when preying upon Bt-treated larvae. However, the predator’s second-instar larvae showed a type II response in both treatments. The results obtained allowed us to conclude that the Bt-based insecticide tested affects the predation behavior of the first-instar larvae of C. cincta on eggs and of both the first- and third-instar larvae of this predator on P. xylostella larvae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Abbott Laboratories (1992) B.t. products manual. Abbott Laboratories, North Chicago, Ill

    Google Scholar 

  • Almeida MF, Barros R, Gondim Júnior MGC, Freitas S, Bezerra AL (2009) Biologia de Ceraeochrysa claveri Navás (Neuroptera: Chrysopidae) predando Plutella xylostella (L.) (Lepidoptera: Plutellidae). Ciênc Rural 39:313–318

    Google Scholar 

  • Barratt BIP, Moran VC, Bigler F, van Lenteren JC (2018) The status of biological control and recommendations for improving uptake for the future. BioControl 63:155–167

    Google Scholar 

  • Bayoumy MH, Awadalla HS (2018) Foraging responses of Coccinella septempunctata, Hippodamia variegata and Chrysoperla carnea to changing in density of two aphid species. Biocontrol Sci Technol 28:226–241

    Google Scholar 

  • Castelo Branco M, Gatehouse AG (2001) A survey of insecticide susceptibility in Plutella xylostella (L.) (Lepidoptera: Yponomeutidae) in the Federal District, Brazil. Neotrop Entomol 30:327–332

    Google Scholar 

  • Cordeiro EMG, Corrêa AS, Venzon M, Guedes RNC (2010) Insecticide survival and behavioral avoidance in the lacewings Chrysoperla externa and Ceraeochrysa cubana. Chemosphere 81:1352–1357

    CAS  Google Scholar 

  • De Bortoli CP (2018) The investigation of factors potentially involved in resistance to Bacillus thuringiensis in native Plutella xylostella (L.) (Lepidoptera: Plutellidae) populations. Tese de Doutorado, Universidade Estadual Paulista, Jaboticabal, SP

  • De Bortoli SA, Polanczyk RA, Vacari AM, De Bortoli CP, Duarte RT (2013) Plutella xylostella (Linnaeus, 1758) (Lepidoptera: Plutellidae): tactics for integrated pest management in Brassicaceae. In: Soloneski S, Larramendy M (eds) Weed and pest control - conventional and new challenges. InTech, Rijeka, pp 31–51

    Google Scholar 

  • De Bortoli SA, Vacari AM, Polanczyk RA, Veiga ACP, Goulart RM (2017) Effect of Bacillus thuringiensis on parasitoids and predators. In: Fiuza LM, Polanczyk RA, Crickmore N (Eds) Bacillus thuringiensis and Lysinibacillus sphaericus. Springer, Cham, pp 67–77

    Google Scholar 

  • De Clercq P, Degheele D (1994) Laboratory measurement of predation by Podisus maculiventris and P. sagitta (Hemiptera: Pentatomidae) on beet armyworm (Lepidoptera: Noctuidae). J Econ Entomol 87:76–83

    Google Scholar 

  • Decourtye A, Armengaud C, Renou M, Devillers J, Cluzeau S, Gauthier M, Pham-Delègue MH (2004) Imidacloprid impairs memory and brain metabolism in the honeybee (Apis mellifera L.). Pestic Biochem Phys 78:83–92

    CAS  Google Scholar 

  • Di Stefano J (2005) Effect size estimates and confidence intervals: an alternative focus for the presentation and interpretation of ecological data. In: Burk AR (ed.) New trends in ecology research. Nova Science Publishers, New York, NY, pp 71–102

    Google Scholar 

  • Englund G, Ohlund G, Hein CL, Diehl S (2011) Temperature dependence of the functional response. Ecol Lett 14:914–921

    Google Scholar 

  • Farrokhi M, Gharekhani G, Iranipour S, Hassanpour M (2017) Host plant–herbivore–predator interactions in Chrysoperla carnea (Neuroptera: Chrysopidae) and Myzus persicae (Homoptera: Aphididae) on four plant species under laboratory conditions. J Econ Entomol 110:2342–2350

    Google Scholar 

  • Fonseca AR, Carvalho CF, Souza B (2000) Resposta funcional de Chrysoperla externa (Hagen) (Neuroptera: Chrysopidae) alimentada com Schizaphis graminum (Rondani) (Hemiptera: Aphididae). A Soc Entomol Bras 29:309–317

    Google Scholar 

  • Freitas S (2001) Criação de crisopídeos (bicho lixeiro) em laboratório. Funep, Jaboticabal, p 20

    Google Scholar 

  • Genovart M, Negre N, Tavecchia G, Bistuer A, Parpal L, Oro D (2010) The young, the weak and the sick: evidence of natural selection by predation. PLoS ONE 5:1–5

    Google Scholar 

  • Georgievska L, Joosten N, Hoover K, Cory JS, Vlak JM, Van Der Werf W (2010) Effects of single and mixed infections with wild type and genetically modified Helicoverpa armigera nucleopolyhedrovirus on movement behaviour of cotton bollworm larvae. Entomol Exp Appl 135:56–67

    Google Scholar 

  • Goulart RM, De Bortoli SA, Vacari AM, Laurentis VL, Veiga ACP, De Bortoli CP, Polanczyk RA (2015) Effect of Bacillus thuringiensis on the biological characteristics of the predator Orius insidiosus Say (Hemiptera: Anthocoridae) feeding on eggs of Plutella xylostella L. (Lepidoptera: Plutellidae). BioAssay 10:1–7

    Google Scholar 

  • Hassanpour M, Bagheri M, Golizadeh A, Farrokhi S (2016) Functional response of Nesidiocoris tenuis (Hemiptera: Miridae) to Trialeurodes vaporariorum (Hemiptera: Aleyrodidae): effect of different host plants. Biocontrol Sci Technol 26:1489–1503

    Google Scholar 

  • Hassanpour M, Maghami R, Rafiee-Dastjerdi H, Golizadeh A, Yazdanian M, Enkegaard A (2015) Predation activity of Chrysoperla carnea (Neuroptera: Chrysopidae) upon Aphis fabae (Hemiptera: Aphididae): effect of different hunger levels. J Asia-Pac Entomol 18:297–302

    Google Scholar 

  • Hassanpour M, Mohaghegh J, Iranipour S, Nouri-Ganbalani G, Enkegaard A (2011) Functional response of Chrysoperla carnea (Neuroptera: Chrysopidae) to Helicoverpa armigera (Lepidoptera: Noctuidae): effect of prey and predator stages. Insect Sci 18:217–224

    Google Scholar 

  • Hassel MP (1978) The dynamics of arthropod predator-prey systems. Princeton University Press, Princeton

    Google Scholar 

  • Hernández-Juárez A, Aguirre-Uribe LA, González-Ruíz A, Chacón-Hernández JC, Landeros-Flores J, Cerna-Chávez E, Flores-Dávila M, Harris MK (2016) Impact of endosulfan on the predatory efficiency of larval Chrysoperla carnea (Neuroptera: Chrysopidae) on the eggs of Heliothis virescens and Spodoptera frugiperda (Lepidoptera: Noctuidae). Can Entomol 148:112–117

    Google Scholar 

  • Hernandez-Martinez P, Navarro-Cerrillo G, Caccia S, De Maagd AR, Moar WJ, Ferré J, Escriche B, Herrero S (2010) Constitutive activation of the midgut response to Bacillus thuringiensis in Bt-resistant Spodoptera exigua. PLoS ONE 5:1–10

    Google Scholar 

  • Hilbeck A, Moar WJ, Pusztai-Carey M, Filippini A, Bigler F (1998) Toxicity of Bacillus thuringiensis CrylAb toxin to the predator Chrysoperla carnea (Neuroptera: Chrysopidae). Environ Entomol 27:1255–1263

    CAS  Google Scholar 

  • Holling CS (1959) Some characteristics of simple types of predation and parasitism. Can Entomol 91:385–398

    Google Scholar 

  • Huang N, Enkegaard A (2010) Predation capacity and prey preference of Chrysoperla carnea on Pieris brassicae. BioControl 55:379–385

    Google Scholar 

  • Jarrahi A, Safavi SA (2016) Temperature-dependent functional response and host preference of Habrobracon hebetor between fungus-infected and uninfected Ephestia kuehniella larvae. J Stored Prod Res 67:41–48

    Google Scholar 

  • Juliano SA (2001) Non-linear curve fitting: predation and functional response curves. In: Scheiner SM, Gurevitch J (Eds) Design and analysis of ecological experiments. Oxford University Press, New York, NY, pp 178–216

    Google Scholar 

  • Li Y, Chen X, Hu L, Romeis J, Peng Y (2014) Bt rice producing Cry1C protein does not have direct detrimental effects on the green lacewing Chrysoperla sinica (Tjeder). Environ Toxicol Chem 33:1391–1397

    Google Scholar 

  • Li Y, Wang Y, Romeis J, Liu Q, Lin K, Chen X, Peng Y (2013) Bt rice expressing Cry2Aa does not cause direct detrimental effects on larvae of Chrysoperla sinica. Ecotoxicology 22:1413–1421

    CAS  Google Scholar 

  • López-Arroyo JI, Tauber CA, Tauber MJ (1999) Comparative life histories of the predators Ceraeochrysa cincta, C. cubana, and C. smithi (Neuroptera: Chrysopidae). Ann Entomol Soc Am 92:208–217

    Google Scholar 

  • Luna RF, Bestete LR, Torres JB, Da Silva-Torres CSA (2018) Predation and behavioral changes in the neotropical lacewing Chrysoperla externa (Hagen) (Neuroptera: Chrysopidae) exposed to lambda-cyhalothrin. Ecotoxicology 27:689–702

    CAS  Google Scholar 

  • Luong TT, Zalucki MP, Perkins LE, Downes SJ (2018) Feeding behaviour and survival of Bacillus thuringiensis resistant and Bacillus thuringiensis susceptible larvae of Helicoverpa armigera (Lepidoptera: Noctuidae) exposed to a diet with Bacillus thuringiensis toxin. Austral Entomol 57:1–8

    Google Scholar 

  • Magalhães GO, Vacari AM, Bortoli CD, Pomari AF, De Bortoli SD, Polanczyk RA (2015) Interactions between Bt-bioinsecticides and Podisus nigrispinus (Dallas)(Hemiptera: Pentatomidae), a predator of Plutella xylostella (L.) (Lepidoptera: Plutellidae). Neotrop Entomol 44:521–527

    Google Scholar 

  • Maia WJMS, Carvalho CF, Souza B, Cruz I, Maia TJAF (2004) Capacidade predatória e aspectos biológicos de Chrysoperla externa (Hagen, 1861) (Neuroptera: Chrysopidae) alimentada com Rhopalosiphum maidis (Fitch, 1856) (Hemiptera: Aphididae). Ciênc Agrotecnol 28:1259–1268

    Google Scholar 

  • Malaquias JB, Ramalho FS, Omoto C, Godoy WAC, Silveira RF (2014) Imidacloprid affects the functional response of predator Podisus nigrispinus (Dallas) (Heteroptera: Pentatomidae) to strains of Spodoptera frugiperda (J.E. Smith) on Bt cotton. Ecotoxicology 23:192–200

    CAS  Google Scholar 

  • Martins GLM, Tomquelski GV, Toscano LC, Gonzaga RL (2013) Seletividade de inseticidas sobre predadores entomófagos na cultura da soja. Cult Agron 22:157–163

    Google Scholar 

  • Meissle M, Zünd J, Waldburger M, Romeis J (2014) Development of Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae) on pollen from Bt-transgenic and conventional maize. Sci Rep 4:1–9

    Google Scholar 

  • Melo PE, Castelo Branco M, Madeira NR (1994) Avaliação de genótipos de repolho para a resistência à traça das crucíferas. Hortic Bras 12:19–24

    Google Scholar 

  • Memon AS, Omar D, Muhamad R, Sajap AS, Asib N, Gilal AA (2015) Functional responses of green lacewing, Chrysoperla nipponensis (Neuroptera: Chrysopidae) reared on natural herb based artificial diet. J Entomol Zool Stud 3:80–83

    Google Scholar 

  • Murdoch WW (1969) Switching in generalist predators: experiments on predator specificity and stability of prey populations. Ecol Monogr 39:335–354

    Google Scholar 

  • Murdoch WW, Oaten A (1975) Predation and population stability. Adv Ecol Res 9:1–131

    Google Scholar 

  • Nunes GS, Dantas TAV, De Souza MDS, Nascimento IN, Batista JL, Malaquias JB (2019a) Life stage and population density of Plutella xylostella affect the predation behavior of Euborellia annulipes. Entomol Exp Appl 167:544–552

    Google Scholar 

  • Nunes GS, Nascimento IN, Souza GMM, Oliveira R, Oliveira FQ, Batista JL (2017) Biological aspects and predation behavior of Ceraeochrysa cubana against Spodoptera frugiperda. Rev Bras Ciênc Agrár 12:20–25

    Google Scholar 

  • Nunes GS, Truzi CC, Nascimento J, Paula FF, Matos ST, Polanczyk RA, De Bortoli SA (2019b) Beauveria bassiana (Ascomycota: Hypocreales)–treated Diamondback moth (Lepidoptera: Plutellidae) larvae mediate the preference and functional response of Euborellia annulipes (Dermaptera: Anisolabididae) nymphs. J Econ Entomol 112:2614–2619

    Google Scholar 

  • Oliveira R, Barbosa VO, Vieira DL, Oliveira FQ, Batista JL, Brito CH (2016a) Development and reproduction of Ceraeochrysa cubana (Neuroptera: Chrysopidae) fed with Aleurocanthus woglumi (Hemiptera: Aleyrodidae). Semina: Ciênc Agric 37:17–24

    Google Scholar 

  • Oliveira RL, Moscardini VF, Gontijo PC, Sâmia RR, Marucci RC, Budia F, Carvalho GA (2016b) Life history parameters and feeding preference of the green lacewing Ceraeochrysa cubana fed with virus-free and potato leafroll virus-infected Myzus persicae. BioControl 61:671–679

    Google Scholar 

  • Palomarez-Pérez M, Bravo-Núñez M, Arredondo-Bernal HC (2019) Functional response of Chrysoperla externa (Hagen 1861) (Neuroptera: Chrysopidae) fed with Melanaphis sacchari (Zehntner 1897) (Hemiptera: Aphididae). Proc Entomol Soc Wash 121:256–264

    Google Scholar 

  • Parra JRP (2002) Controle biológico no Brasil: parasitóides e predadores. Editora Manole Ltda, São Paulo

    Google Scholar 

  • Pervez A, Omkar (2005) Functional responses of coccinellid predators: an illustration of a logistic approach. J Insect Sci 5:6

    Google Scholar 

  • Polanczyk RA, Pratissoli D, Vianna UR, Oliveira RGS, Andrade GS (2006) Interação entre inimigos naturais: trichogramma e Bacillus thuringiensis no controle biológico de pragas agrícolas. Acta Sci Agron 28:233–239

    Google Scholar 

  • Ramírez-Delgado M, López-Arroyo I, González-Hernández A, Badii-Zebeh MH (2007) Rasgos biológicos y poblacionales del depredador Cereaeochrysa sp. nr. cincta (México) (Neuroptera: Chrysopidae). Acta Zool Mex 23:79–95

    Google Scholar 

  • Rogers D (1972) Random search and insect population models. J Anim Ecol 41:369–383

    Google Scholar 

  • Rugno GR, Zanardi OZ, Cuervo JB, Morais MR, Yamamoto PT (2016) Impact of insect growth regulators on the predator Ceraeochrysa cincta (Schneider) (Neuroptera: Chrysopidae). Ecotoxicology 25:940–949

    CAS  Google Scholar 

  • Santos NA (2018) Xylocoris sordidus (Reuter) (Hemiptera: Anthocoridae): possível agente de controle biológico aplicado. Tese de doutorado, Universidade de São Paulo, Ribeirão Preto, SP

  • SAS Institute (2015) SAS/STAT user’s guide. SAS Institute, Cary, NC

    Google Scholar 

  • Schneider CW, Tautz J, Grunewald B, Fuchs S (2012) RFID tracking of sublethal effects of two neonicotinoid insecticides on the foraging behavior of Apis mellifera. PLoS ONE 7:e30023

    CAS  Google Scholar 

  • Silva GA, Carvalho CF, Souza B (2002) Aspectos biológicos de Chrysoperla externa (Hagen, 1861) (Neuroptera: Chrysopidae) alimentada com lagartas de Alabama argillacea (Hübner, 1818) (Lepidoptera: Noctuidae). Ciênc Agrotecnol 26:682–698

    Google Scholar 

  • Stemele MA (2017) Comparative effects of a selective insecticide, Bacillus thuringiensis var. kurstaki and the broad-spectrum insecticide cypermethrin on diamondback moth and its parasitoid Cotesia vestalis (Hymenoptera; Braconidae). Crop Prot 101:35–42

    CAS  Google Scholar 

  • Sultan A, Khan MF, Akbar MF, Arain QA, Soomro FN, Siddique S (2019) Negative impact of selected insecticides on functional response and susceptibility of Coccinella septempunctata. Southwest Entomol 44:437–447

    Google Scholar 

  • Svobodová Z, Burkness EC, Skoková Habuštová O, Hutchison WD (2017) Predator preference for Bt-fed Spodoptera frugiperda (Lepidoptera: Noctuidae) prey: implications for insect resistance management in Bt maize seed blends. J Econ Entomol 110:1317–1325

    Google Scholar 

  • Tauber CA, De León T, Penny ND, Tauber MJ (2000) The genus Ceraeochrysa (Neuroptera: Chrysopidae) of America north of Mexico: larvae, adults, and comparative biology. Ann Entomol Soc Am 93:1195–1221

    Google Scholar 

  • Tavares WS, Cruz I, Silva RB, Serrão JE, Zanuncio JC (2012) Prey consumption and development of Chrysoperla externa (Neuroptera: Chrysopidae) on Spodoptera frugiperda (Lepidoptera: Noctuidae) eggs and larvae and Anagasta kuehniella (Lepidoptera: Pyralidae) eggs. Maydica 56:283–289

    Google Scholar 

  • Timms JE, Oliver TH, Straw NA, Leather SR (2008) The effects of host plant on the coccinellid functional response: is the conifer specialist Aphidecta obliterata (L.) (Coleoptera: Coccinellidae) better adapted to spruce than the generalist Adalia bipunctata (L.) (Coleoptera: Coccinellidae)? Biol Control 47:273–281

    Google Scholar 

  • Torres JB, Ruberson JR, Adang MJ (2006) Expression of Bacillus thuringiensis Cry1Ac protein in cotton plants, acquisition by pests and predators: a tritrophic analysis. Agric For Entomol 8:191–202

    Google Scholar 

  • Trexler JC, Mcculloch CE, Travis J (1988) How can the functional response best be determined? Oecologia 76:206–214

    Google Scholar 

  • Troczka BJ, Williamson MS, Field LM, Davies TGE (2017) Rapid selection for resistance to diamide insecticides in Plutella xylostella via specific amino acid polymorphisms in the ryanodine receptor. Neurotoxicology 60:224–233

    CAS  Google Scholar 

  • Uiterwaal SF, DeLong JP (2018) Multiple factors, including arena size, shape the functional responses of ladybird beetles. J Appl Ecol 55:2429–2438

    CAS  Google Scholar 

  • van Frankenhuyzen K (2009) Insecticidal activity of Bacillus thuringiensis crystal proteins. J Invertebr Pathol 101:1–16

    Google Scholar 

  • van Lenteren JC, Bolckmans K, Köhl J, Ravensberg WJ, Urbaneja A (2018) Biological control using invertebrates and microorganisms: plenty of new opportunities. BioControl 63:39–59

    Google Scholar 

  • Varshney R, Budhlakoti N, Ballal CR (2018) Functional response of Geocoris ochropterus Fieber (Hemiptera: Geocoridae) to different egg densities of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae). Phytoparasitica 46:451–458

    CAS  Google Scholar 

  • Xavier WP, Ramos EG, Viana GS, Chiquete SM, Marinho AB, Borges FRM (2018) Produção de biopesticidas para o controle ecológico de pragas agrícolas em hortas orgânicas. Rev Bras Agric Irrig 12:2808–2813

    Google Scholar 

  • Zada H, Ahmad B, Nadeem M, Huma Z, Salim M (2016) Functional response of Chrysoperla carnea Stephen (Neuroptera: Chrysopidae) fed on cabbage aphid, Brevicoryne brassicae (Linnaeus) under laboratory conditions. Pak J Zool 48:165–169

    Google Scholar 

  • Zago HB, Siqueira HA, Pereira EJ, Picanço MC, Barros R (2014) Resistance and behavioral response of Plutella xylostella (Lepidoptera: Plutellidae) populations to Bacillus thuringiensis formulations. Pestic Manag Sci 70:488–495

    CAS  Google Scholar 

  • Zhang S, Zhang X, Shen J, Mao K, You H, Li J (2016) Susceptibility of field populations of the diamondback moth, Plutella xylostella, to a selection of insecticides in Central China. Pestic Biochem Physiol 132:38–46

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Coordination for the Improvement of Higher Education Personnel—Brazil (CAPES—Finance Code 001), National Council for Scientific and Technological Development (CNPq), and the São Paulo Research Foundation (FAPESP—process 2018/10246-0) for the financial support.

Funding

This study was funded by Coordination for the Improvement of Higher Education Personnel—Brazil (CAPES—Finance Code 001), National Council for Scientific and Technological Development (CNPq), and the São Paulo Research Foundation (FAPESP—process 2018/10246-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabela Cristina de Oliveira Pimenta.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Oliveira Pimenta, I.C., da Silva Nunes, G., de Magalhães, G.O. et al. Effects of a Bt-based insecticide on the functional response of Ceraeochrysa cincta preying on Plutella xylostella. Ecotoxicology 29, 856–865 (2020). https://doi.org/10.1007/s10646-020-02244-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-020-02244-x

Keywords

Navigation