Skip to main content

Advertisement

Log in

Duality of gauges and symplectic forms in vector spaces

  • Published:
Collectanea Mathematica Aims and scope Submit manuscript

Abstract

A gauge \(\gamma\) in a vector space X is a distance function given by the Minkowski functional associated to a convex body K containing the origin in its interior. Thus, the outcoming concept of gauge spaces \((X, \gamma )\) extends that of finite dimensional real Banach spaces by simply neglecting the symmetry axiom (a viewpoint that Minkowski already had in mind). If the dimension of X is even, then the fixation of a symplectic form yields an identification between X and its dual space \(X^*\). The image of the polar body \(K^{\circ }\subseteq X^*\) under this identification yields a (skew-)dual gauge on X. In this paper, we study geometric properties of this so-called dual gauge, such as its behavior under isometries and its relation to orthogonality. A version of the Mazur–Ulam theorem for gauges is also proved. As an application of the theory, we show that closed characteristics of the boundary of a (smooth) convex body are optimal cases of a certain isoperimetric inequality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Alonso, J., Martini, H., Wu, S.: On Birkhoff orthogonality and isosceles orthogonality in normed linear spaces. Aequ. Math. 83(1–2), 153–189 (2012)

    Article  MathSciNet  Google Scholar 

  2. Artstein-Avidan, S., Ostrover, Y.: A Brunn–Minkowski inequality for symplectic capacities of convex domains. Int. Math. Res. Not. 2008(1), 31 (2008)

    MATH  Google Scholar 

  3. Artstein-Avidan, S., Ostrover, Y.: Bounds for Minkowski billiard trajectories in convex bodies. Int. Res. Math. Not. 2014(1), 165–193 (2014)

    Article  MathSciNet  Google Scholar 

  4. Boltyanski, V., Martini, H., Soltan, P.S.: Excursions into Combinatorial Geometry. Universitext, Springer, Berlin (1997)

    Book  Google Scholar 

  5. Brandenberg, R., Merino, B.G.: Minkowski concentricity and complete simplices. J. Math. Anal. Appl. 454(2), 981–994 (2017)

    Article  MathSciNet  Google Scholar 

  6. Brandenberg, R., Gonzlez Merino, B., Jahn, T., Martini, H.: Is a complete, reduced set necessarily of constant width? Adv. Geom. 19(1), 31–40 (2019)

    Article  MathSciNet  Google Scholar 

  7. Horváth, Á.G., Spirova, M., Lángi, Z.: Semi-inner products and the concept of semi-polarity. Results Math. 71(1), 127–144 (2017)

    Article  MathSciNet  Google Scholar 

  8. Jahn, T.: Extremal radii, diameter and minimum width in generalized Minkowski spaces. Rocky Mt. J. Math. 47(3), 825–848 (2017)

    Article  MathSciNet  Google Scholar 

  9. Jahn, T.: Orthogonality in generalized Minkowski spaces. J. Convex Anal. 26(1), 49–76 (2019)

    MathSciNet  MATH  Google Scholar 

  10. Jahn, T.: Successive radii and ball operators in generalized Minkowski spaces. Adv. Geom. 17(3), 347–354 (2017)

    Article  MathSciNet  Google Scholar 

  11. Martini, H., Swanepoel, K.: Antinorms and Radon curves. Aequ. Math. 72(1), 110–138 (2006)

    Article  MathSciNet  Google Scholar 

  12. McDuff, D., Salamon, D.: Introduction to Symplectic Topology. Oxford Graduate Texts in Mathematics, vol. 27. Oxford University Press, Oxford (2017)

    Book  Google Scholar 

  13. Merino, B.G., Jahn, T., Richter, C.: Uniqueness of circumcenters in generalized Minkowski spaces. J. Approx. Theory 237, 153–159 (2019)

    Article  MathSciNet  Google Scholar 

  14. Obst, A.: A perimeter-based angle measure in generalized Minkowski spaces, submitted (2018)

  15. Rassias, T.: Properties of isometric mappings. J. Math. Anal. Appl. 235(1), 108–121 (1999)

    Article  MathSciNet  Google Scholar 

  16. Schneider, R.: Convex Bodies: The Brunn–Minkowski Theory. Encyclopedia of Mathematics and its Applications, vol. 151. Cambridge University Press, Cambridge (2014)

    MATH  Google Scholar 

  17. Thompson, A.C.: Minkowski Geometry, Encyclopedia of Mathematics and its Applications 63. Cambridge University Press, Cambridge (1996)

    Google Scholar 

  18. Wang, J.: On the generalizations of the Mazur–Ulam isometric theorem. J. Math. Anal. Appl. 263(2), 510–521 (2001)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vitor Balestro.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balestro, V., Martini, H. & Teixeira, R. Duality of gauges and symplectic forms in vector spaces. Collect. Math. 72, 501–525 (2021). https://doi.org/10.1007/s13348-020-00297-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13348-020-00297-z

Keywords

Mathematics Subject Classification

Navigation