Skip to main content

Advertisement

Log in

A novel carbon/germanium conic structure: theoretical study using density functional theory

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Complete optimization without geometry constraints and calculation of electronic properties of novel conic molecules such as \(\hbox {C}_{n}\hbox {H}_{n}\hbox {Ge}_{n}\hbox {H}_{n}\) and \(\hbox {C}_{n}\hbox {Ge}_{n}\hbox {H}_{n}\), with \(n = 3{-}8\), was carried out with density functional theory using B3LYP and PBE1PBE functionals with 6-31\(+\)G(d, p) and cc-pVTZ basis sets. Calculations of formation energy showed stable and peculiar geometric and electronic properties. All carbon and germanium atoms for \(\hbox {C}_{n}\hbox {H}_{n}\hbox {Ge}_{n}\hbox {H}_{n}\) compounds, which are \(\hbox {sp}^{\mathrm {3}}\)-hybridized, were located in the same plane. This finding contradicts the notions of hybridization known to date. For these new molecular compounds, quantum descriptors such as electrochemical potential (\(\mu \)), chemical hardness (\(\eta \)), electrophilicity index (\(\omega \)), dipole moment, energy gap and the shape of the molecular orbital have been calculated in addition to nucleus independent chemical shifts, polarizability and harmonic oscillator model of aromaticity which are important tools for determining the aromaticity of the studied compounds. Thus, the aim of the work is, on the one hand, to propose new stable molecular structures formed of carbon and germanium atoms, and on the other hand, to challenge our understanding of hybridization and aromaticity notion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kroto H W, Heath J R, O’Brien S C, Curl R F and Smalley R E 1985 Nature 318 162

    Article  CAS  Google Scholar 

  2. Mohan V and Datta A 2009 J. Phys. Chem. Lett. 1 136

    Article  Google Scholar 

  3. Khajehali Z and Shamlouei H R 2018 C. R. Chim. 21 541

    Article  CAS  Google Scholar 

  4. Dong J and Sankey O F 1999 J. Phys.: Condens. Matter 11 6129

    CAS  Google Scholar 

  5. Nijamudheen A, Bhattacharjee R, Choudhury S and Datta A 2015 J. Phys. Chem. C 119 3802

    Article  CAS  Google Scholar 

  6. Mandal T K, Jose D, Nijamudheen A and Datta A 2014 J. Phys. Chem. C 118 12115

    Article  CAS  Google Scholar 

  7. Graetz J, Ahn C C, Yazami R and Fultz B 2004 J. Electrochem. Soc. 151 A698M

    Article  Google Scholar 

  8. Fuller C S and Severiens J C 1954 Phys. Rev. 96 21

    Article  CAS  Google Scholar 

  9. Winter M and Bsenhard J O 2000 Electrochim. Acta 45 31

    Article  Google Scholar 

  10. Ersan F, Gökçe A G and Aktürk E 2016 Appl. Surf. Sci.389 1

    Article  CAS  Google Scholar 

  11. Ueno L T, Marim L R, Dal Pino A, Ornellas F R and Machado F B C 2006 Chem. Phys. Lett. 432 11

    Article  CAS  Google Scholar 

  12. Krygowski T M and Szatylowicz H 2015 ChemTexts1 12

    Article  CAS  Google Scholar 

  13. Guo L, Zheng X, Liu C, Zhou W and Zeng Z 2012 Comput. Theor. Chem. 982 17

    Article  CAS  Google Scholar 

  14. Acikgoz S, Yungevis H, Özünal E and Şahin A 2017 J. Mater. Sci. 52 13149

    Article  CAS  Google Scholar 

  15. Manolescu A, Macovei D, Manaila R, Grigrovici R and Pausescu P 1987 J. Non-Cryst. Solids 97&98 519

    Article  Google Scholar 

  16. Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M, Cheeseman J R et al 2004 Gaussian 03, Revision C.02 (Wallingford, CT: Gaussian, Inc.)

    Google Scholar 

  17. Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M, Cheeseman J R et al 2004 Gaussian 03, Revision E.01 (Wallingford, CT: Gaussian, Inc.)

    Google Scholar 

  18. Rivière-Baudet M, Dahrouch M, Rivière P, Hussein K and Barthelat J C 2000 J. Organomet. Chem. 612 69

    Article  Google Scholar 

  19. Boughdiri S, Hussein K, Tangour B, Dahrouch M, Rivière-Baudet M and Barthelat J C 2004 J. Organomet. Chem. 689 3279

    Article  CAS  Google Scholar 

  20. Chattaraj P K, Sarkar U and Roy D R 2006 Chem. Rev. 106 2065

    Article  CAS  Google Scholar 

  21. Hazarika K K, Baruah N C and Deka R C 2009 Struct. Chem. 20 1079

    Article  CAS  Google Scholar 

  22. Parr R G, Szentpaly L and Liu S 1999 J. Am. Chem. Soc. 121 1922

    Article  CAS  Google Scholar 

  23. Pang Q, Zhang Y, Zhang J M, Ji V and Xu K W 2011 Mater. Chem. Phys. 130 140

    Article  CAS  Google Scholar 

  24. Zeyrek C T, Unver H, Arpacı Ö T, Polat K, İskeleli N O and Yildiz M 2015 J. Mol. Struct. 1081 22

    Article  CAS  Google Scholar 

  25. Kassaee M Z and Aref Rad H 2010 Comput. Mater. Sci. 48 144

    Article  CAS  Google Scholar 

  26. Böttcher C J F and Bordewijk P 1973 Theory of electric polarization 2nd edn, vol 2 (Amsterdam: Elsevier)

    Google Scholar 

  27. Kruszewski J and Krygowski T M 1972 Bull. Acad. Pol. Sci. Chim. 20 907

    CAS  Google Scholar 

  28. Kruszewski J and Krygowski T M 1972 Tetrahedron Lett. 13 3839

    Article  Google Scholar 

  29. Krygowski T M 1993 J. Chem. Inf. Comput. Sci. 33 7

    Article  Google Scholar 

  30. Balachandran V and Parimala K 2012 Spectrochim. Acta, Part A 96 340

    Article  CAS  Google Scholar 

  31. Shim I, Baba M S and Ginerich K A 1998 J. Phys. Chem. A 102 10763

    Article  CAS  Google Scholar 

  32. Brahimi M, Belmiloud Y and Kheffache D 2006 J. Mol. Struct.: THEOCHEM 759 1

    Article  CAS  Google Scholar 

  33. Ugrinov A and Serov S C 2005 C. R. Chim. 8 1878

    Article  CAS  Google Scholar 

  34. Siouani C, Mahtout S and Rabilloud F 2019 J. Mol. Model. 25 113

    Article  CAS  Google Scholar 

  35. Govindarajan M, Periandy S and Carthigayen K 2012 Spectrochim. Acta, Part A 97 411

    Article  CAS  Google Scholar 

  36. Ravikumar C, Joe I H and Jayakumar V S 2008 Chem. Phys. Lett. 460 552

    Article  CAS  Google Scholar 

  37. Abramenko V L and Sergienko V S 2002 Russ. J. Inorg. Chem. 47 905

    CAS  Google Scholar 

  38. Zeyrek C T, Dilek N, Yıldız M and Unver H 2014 Mol. Phys. 112 2557

    Article  CAS  Google Scholar 

  39. Schleyer P V R, Maerker C, Dransfeld A, Jiao H and Hommes N J R V E 1996 J. Am. Chem. Soc. 18 6317

    Article  Google Scholar 

  40. Andjelkovic L, Perić M, Zlatar M, Grubišić S and Gruden-Pavlović M 2012 Tetrahedron Lett. 53 794

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was conducted in the framework of the PRFU project, code number: B00L01UN160420190019 of MESRS of Algeria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meziane Brahimi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elkebich, M., Zaater, S., Abtouche, S. et al. A novel carbon/germanium conic structure: theoretical study using density functional theory. Bull Mater Sci 43, 160 (2020). https://doi.org/10.1007/s12034-020-02131-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-020-02131-5

Keywords

Navigation