Skip to main content
Log in

Dielectric and magnetic properties of InCr1−xTixO3+x/2 (x = 3/4, 5/7 and 2/3) solid solution

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Single-phase samples of InCr1−xTixO3+x/2 with x = 3/4, 5/7 and 2/3 compositions were synthesized by the solid-state reaction method, and optical, dielectric and magnetic properties were explored for the first time. Crystal structure analysis showed a complete Cr3+/Ti4+ solubility, and the monoclinic crystal structure was successfully characterized. The optical bandgap was obtained by both Kubelka–Munk function and Tauc plot method. The Cr3+/Ti4+ composition has a little effect in the direct bandgap taking values of 2.09 eV for x = 3/4 and 1.97 eV for x = 2/3, respectively. We found that the permittivity shows a peak strongly dependent on the frequency, which is typical of relaxor behavior. In addition, the relaxor peak is dependent on the Cr3+/Ti4+ composition. The AC conductivity analysis showed that main charge carriers to participate in the electric conductivity are associated with small polarons with Eact ~ 0.40 eV. Diluted magnetic or paramagnetic behavior was found in the magnetization studies. Accordingly, we found that the compositional disordered Cr3+/Ti4+ cations randomly distributed among equivalent sites into Cr/Ti–O layer explain both the dielectric relaxor and magnetic features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. R.L. Hoffman, B.J. Norris, J.F. Wager, ZnO-based transparent thin-film transistors. Appl. Phys. Lett. 82(5), 733–735 (2003). https://doi.org/10.1063/1.1542677

    Article  ADS  Google Scholar 

  2. K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, H. Hosono, Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 432(7016), 488–492 (2004). https://doi.org/10.1038/nature03090

    Article  ADS  Google Scholar 

  3. L. Petti, N. Münzenrieder, C. Vogt et al., Metal oxide semiconductor thin-film transistors for flexible electronics. Appl. Phys. Rev. 3(2), 021303 (2016). https://doi.org/10.1063/1.4953034

    Article  ADS  Google Scholar 

  4. Z. Chen, W. Li, R. Li, Y. Zhang, G. Xu, H. Cheng, Fabrication of highly transparent and conductive indium-tin oxide thin films with a high figure of merit via solution processing. Langmuir 29(45), 13836–13842 (2013). https://doi.org/10.1021/la4033282

    Article  Google Scholar 

  5. V.G. Kytin, V.A. Kulbachinskii, O.V. Reukova et al., Conducting properties of In2O3:Sn thin films at low temperatures. Appl. Phys. A 114(3), 957–964 (2014). https://doi.org/10.1007/s00339-013-7799-8

    Article  ADS  Google Scholar 

  6. S. Jeong, Y.-G. Ha, J. Moon, A. Facchetti, T.J. Marks, Role of gallium doping in dramatically lowering amorphous-oxide processing temperatures for solution-derived indium zinc oxide thin-film transistors. Adv. Mater. 22(12), 1346–1350 (2010). https://doi.org/10.1002/adma.200902450

    Article  Google Scholar 

  7. H. Yabuta, M. Sano, K. Abe et al., High-mobility thin-film transistor with amorphous InGaZnO4 channel fabricated by room temperature rf-magnetron sputtering. Appl. Phys. Lett. 89(11), 112123 (2006). https://doi.org/10.1063/1.2353811

    Article  ADS  Google Scholar 

  8. J. Zhou, G. Wu, L. Guo, L. Zhu, Q. Wan, Flexible Transparent junctionless TFTs with oxygen-tuned indium-zinc-oxide channels. IEEE Electron. Device Lett. 34(7), 888–890 (2013). https://doi.org/10.1109/LED.2013.2260819

    Article  ADS  Google Scholar 

  9. N. Kimizuka, E. Takayama, Survey of the phase formation in the Yb2O3–Ga2O3–MO and Yb2O3–Cr2O3–MO systems in air at high temperatures (M: Co, Ni, Cu, and Zn). J. Solid State Chem. 43(3), 278–284 (1982). https://doi.org/10.1016/0022-4596(82)90241-9

    Article  ADS  Google Scholar 

  10. N. Kimizuka, T. Mohri, Spinel, YbFe2O4, and Yb2Fe3O7 types of structures for compounds in the In2O3 and Sc2O3–A2O3–BO systems [A: Fe, Ga, or Al; B: Mg, Mn, Fe, Ni, Cu, or Zn] at temperatures over 1000°C. J. Solid State Chem. 60(3), 382–384 (1985). https://doi.org/10.1016/0022-4596(85)90290-7

    Article  ADS  Google Scholar 

  11. M. Nakamura, N. Kimizuka, T. Mohri, M. Isobe, Phase equilibria in the system In2O3–M2ZnO4–ZnO at 1350 °C (M: Fe, Ga, Al) and crystal chemical consideration of InMO3 (ZnO)m phases with LuFeO3 (ZnO)m-type structures. J Alloys Compd. 192(1–2), 105–107 (1993). https://doi.org/10.1016/0925-8388(93)90200-7

    Article  Google Scholar 

  12. M. Nakamura, N. Kimizuka, T. Mohri, The phase relations in the In2O3–Ga2ZnO4–ZnO system at 1350°C. J Solid State Chem. 93(2), 298–315 (1991). https://doi.org/10.1016/0022-4596(91)90304-Z

    Article  ADS  Google Scholar 

  13. Y. Ogo, H. Yanagi, T. Kamiya, K. Nomura, M. Hirano, H. Hosono, Epitaxial film growth, optical, electrical, and magnetic properties of layered oxide In3FeTi2O10. J. Appl. Phys. 101(10), 103714 (2007). https://doi.org/10.1063/1.2734953

    Article  ADS  Google Scholar 

  14. H.-W. Zan, W.-W. Tsai, C.-H. Chen, C.-C. Tsai, Effective mobility enhancement by using nanometer dot doping in amorphous IGZO thin-film transistors. Adv. Mater. 23(37), 4237–4242 (2011). https://doi.org/10.1002/adma.201102530

    Article  Google Scholar 

  15. F. Brown, M.J. Flores, N. Kimizuka et al., Phase relations in the system In2O3–TiO2–Fe2O3 at 1100 °C in Air. J. Solid State Chem. 144(1), 91–99 (1999). https://doi.org/10.1006/jssc.1998.8123

    Article  ADS  Google Scholar 

  16. F. Brown, N. Kimizuka, Y. Michiue et al., New compounds In3Ti2AO10, In6Ti6BO22, and their solid solutions (A: Al, Cr, Mn, Fe, or Ga; B: Mg, Mn Co, Ni, Cu, or Zn): synthesis and crystal structures. J. Solid State Chem. 147(2), 438–449 (1999). https://doi.org/10.1006/jssc.1999.8358

    Article  ADS  Google Scholar 

  17. N. Kimizuka, F. Brown, M.J.R. Flores, M. Nakamura, Y. Michiue, T. Mohri, The phase relations in the system In2O3–TiO2–MgO at 1100 and 1350 °C. J. Solid State Chem. 150(2), 276–280 (2000). https://doi.org/10.1006/jssc.1999.8591

    Article  ADS  Google Scholar 

  18. Y. Michiue, M. Onoda, F. Brown, N. Kimizuka, Modulated structure of the composite crystal InCr1−xTixO3+x/2. J. Solid State Chem. 177(8), 2644–2648 (2004). https://doi.org/10.1016/j.jssc.2004.04.033

    Article  ADS  Google Scholar 

  19. Y. Michiue, F. Brown, N. Kimizuka, M. Watanabe, M. Orita, H. Ohta, Orthorhombic InFe 0.33 Ti 0.67 O 3.33. Acta Crystallogr. Sect. C Cryst. Struct. Commun. 55(11), 1755–1757 (1999). https://doi.org/10.1107/S0108270199009038

    Article  Google Scholar 

  20. F.F. Castillón-Barraza, A. Durán, M.H. Farías et al., Phase stability, microstructure, and dielectric properties of quaternary oxides In12Ti10A2 BO42 (A: Ga or Al; B: Mg or Zn). J. Am. Ceram. Soc. 102(1), 320–330 (2019). https://doi.org/10.1111/jace.15920

    Article  Google Scholar 

  21. T.J.B. Holland, S.A.T. Redfern, Unit cell refinement from powder diffraction data: the use of regression diagnostics. Miner. Mag. 61(404), 65–77 (1997). https://doi.org/10.1180/minmag.1997.061.404.07

    Article  Google Scholar 

  22. Y. Michiue, F. Brown, N. Kimizuka et al., Crystal structure of InTi 0.75 Fe 0.25 O 3.375 and phase relations in the pseudobinary system InFeO3–In2Ti2O7 at 1300 °C. Chem. Mater. 12(8), 2244–2249 (2000). https://doi.org/10.1021/cm000189d

    Article  Google Scholar 

  23. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A 32(5), 751–767 (1976). https://doi.org/10.1107/S0567739476001551

    Article  ADS  Google Scholar 

  24. P. Kubelka, New contributions to the optics of intensely light-scattering materials part II: nonhomogeneous layers*. J. Opt. Soc. Am. 44(4), 330 (1954). https://doi.org/10.1364/JOSA.44.000330

    Article  ADS  Google Scholar 

  25. L. Yang, B. Kruse, Revised Kubelka–Munk theory I theory and application. J. Opt. Soc. Am. A 21(10), 1933 (2004). https://doi.org/10.1364/JOSAA.21.001933

    Article  ADS  Google Scholar 

  26. J. Tauc, Optical properties and electronic structure of amorphous Ge and Si. Mater. Res. Bull. 3(1), 37–46 (1968). https://doi.org/10.1016/0025-5408(68)90023-8

    Article  Google Scholar 

  27. D.C. Hays, B.P. Gila, S.J. Pearton, F. Ren, Energy band offsets of dielectrics on InGaZnO 4. Appl Phys Rev. 4(2), 021301 (2017). https://doi.org/10.1063/1.4980153

    Article  Google Scholar 

  28. A.A. Bokov, Z.-G. Ye, Dielectric relaxation in relaxor ferroelectrics. J. Adv. Dielectr. 02(02), 1241010 (2012). https://doi.org/10.1142/S2010135X1241010X

    Article  Google Scholar 

  29. N.W. Thomas, A new framework for understanding relaxor ferroelectrics. J. Phys. Chem. Solids 51(12), 1419–1431 (1990). https://doi.org/10.1016/0022-3697(90)90025-B

    Article  ADS  Google Scholar 

  30. O. Raymond, R. Font, N. Suárez-Almodovar, J. Portelles, J.M. Siqueiros, Frequency-temperature response of ferroelectromagnetic Pb(Fe1/2Nb1/2O3) ceramics obtained by different precursors. Part I. Structural and thermo-electrical characterization. J. Appl. Phys. 97(8), 084107 (2005). https://doi.org/10.1063/1.1870099

    Article  ADS  Google Scholar 

  31. M.A. Tena, G. Garcia-Belmonte, J. Bisquert, P. Escribano, M.T. Colomer, J.R. Jurado, Impedance spectroscopy studies of orthorhombic FeNbO4. J. Mater. Sci. 31(8), 2043–2046 (1996). https://doi.org/10.1007/BF00356624

    Article  ADS  Google Scholar 

  32. A. Durán, E. Verdin, R. Escamilla, F. Morales, R. Escudero, Mechanism of small-polaron formation in the biferroic YCrO3 doped with calcium. Mater. Chem. Phys. 133(2–3), 1011–1017 (2012). https://doi.org/10.1016/j.matchemphys.2012.02.008

    Article  Google Scholar 

  33. A. Durán, F.C. Meza, G.G.C. Arizaga, Hydroxide precursors to produce nanometric YCrO3: characterization and conductivity analysis. Mater. Res. Bull. 47(6), 1442–1447 (2012). https://doi.org/10.1016/j.materresbull.2012.02.043

    Article  Google Scholar 

  34. C. Ang, Z. Yu, L.E. Cross, Oxygen-vacancy-related low-frequency dielectric relaxation and electrical conduction in Bi:SrTiO3. Phys. Rev. B. 62(1), 228–236 (2000). https://doi.org/10.1103/PhysRevB.62.228

    Article  ADS  Google Scholar 

  35. M. Imlau, H. Badorreck, C. Merschjann, Optical nonlinearities of small polarons in lithium niobate. Appl. Phys. Rev. 2(4), 040606 (2015). https://doi.org/10.1063/1.4931396

    Article  ADS  Google Scholar 

  36. D. Adler, J. Feinleib, Electrical and optical properties of narrow-band materials. Phys. Rev. B 2(8), 3112–3134 (1970). https://doi.org/10.1103/PhysRevB.2.3112

    Article  ADS  Google Scholar 

Download references

Acknowledgements

A.D. thanks PAPIIT-UNAM project IN101919. The author thanks to R. Escamilla for the fruitful disccusion on the crystal structure analysis. V.E.A.M. also thanks to General Direction of Higher Education (Prodep-dgesu-SEP) Project UNISON-PTC-296. The technical assistance of the M en C. P. Casillas is acknowledged

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Durán.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Durán, A., Martínez-Aguilar, E., Conde-Gallardo, A. et al. Dielectric and magnetic properties of InCr1−xTixO3+x/2 (x = 3/4, 5/7 and 2/3) solid solution. Appl. Phys. A 126, 575 (2020). https://doi.org/10.1007/s00339-020-03618-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03618-y

Keywords

Navigation